login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079896 Discriminants of indefinite binary quadratic forms. 33
5, 8, 12, 13, 17, 20, 21, 24, 28, 29, 32, 33, 37, 40, 41, 44, 45, 48, 52, 53, 56, 57, 60, 61, 65, 68, 69, 72, 73, 76, 77, 80, 84, 85, 88, 89, 92, 93, 96, 97, 101, 104, 105, 108, 109, 112, 113, 116, 117, 120, 124, 125, 128, 129, 132, 133, 136, 137, 140, 141, 145, 148 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Numbers n such that n == 0 (mod 4) or n == 1 (mod 4), but n is not a square.

For an indefinite binary quadratic form over the integers a*x^2 + b*x*y + c*y^2 the discriminant is D = b^2 - 4*a*c > 0; and D not a square is assumed.

Also, a superset of A227453. - Ralf Stephan, Sep 22 2013

For the period length of the continued fraction of sqrt(a(n)) see A267857(n). - Wolfdieter Lang, Feb 18 2016

REFERENCES

A. Scholz and B. Schoeneberg, Einfuehrung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, p. 112.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

S. R. Finch, Class number theory

Steven R. Finch, Class number theory [Cached copy, with permission of the author]

FORMULA

a(2*k^2 + 2*k) = 4*(k+1)^2 + 1 for k >= 0. - Gheorghe Coserea, Nov 07 2016

a(2*k^2 + 4*k + 1 + (k+1)*(-1)^k) = (2*k + 3)*(2*k + 3 + (-1)^k) for k >= 0. - Bruno Berselli, Nov 10 2016

MATHEMATICA

Select[ Range[148], (Mod[ #, 4] == 0 || Mod[ #, 4] == 1) && !IntegerQ[ Sqrt[ # ]] & ]

PROG

(PARI) seq(N) = {

  my(n = 1, v = vector(N), top = 0);

  while (top < N,

    if (n%4 < 2 && !issquare(n), v[top++] = n); n++; );

  return(v);

};

seq(62) \\ Gheorghe Coserea, Nov 07 2016

CROSSREFS

Cf. A014601, A042948 (with squares), A087048 (class numbers), A267857.

Sequence in context: A076635 A294227 A116602 * A133315 A003658 A003656

Adjacent sequences:  A079893 A079894 A079895 * A079897 A079898 A079899

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jan 31 2003

EXTENSIONS

More terms from Robert G. Wilson v, Mar 26 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 11:07 EDT 2020. Contains 334592 sequences. (Running on oeis4.)