login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079858 E.g.f. 1/(cos(2x)-sin(2x)). 3
1, 2, 12, 88, 912, 11552, 176832, 3150208, 64188672, 1470996992, 37459479552, 1049279715328, 32063706796032, 1061443378552832, 37841217707753472, 1445427909919080448, 58892032991566036992, 2549444593020567683072 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..17.

FORMULA

E.g.f.: 1/(cos(2x)-sin(2x)).

a(n) = | 2*8^n*lerchphi(-1,-n,1/4) |. - Peter Luschny, Apr 27 2013

G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - 8*x^2*(k+1)^2/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Sep 27 2013

a(n) ~ 4 * n^(n+1/2) * (8/Pi)^n / (sqrt(Pi)*exp(n)). - Vaclav Kotesovec, Oct 07 2013

E.g.f.:  1/(1-2*x)*(1 + 2*x^2/((1-2*x)*W(0) - x )), where W(k) = x + (k+1)/( 1 - 2*x/( 2*k+3 - x*(2*k+3)/W(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Dec 27 2013

MATHEMATICA

CoefficientList[Series[1/(Cos[2*x]-Sin[2*x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)

PROG

(PARI) a(n)=if(n<0, 0, n!*polcoeff(1/(cos(2*x+x*O(x^n))-sin(2*x+x*O(x^n))), n))

(Sage)

from mpmath import *

mp.dps = 32; mp.pretty = True

def A079858(n): return abs(2*8^n*lerchphi(-1, -n, 1/4))

[A079858(n) for n in (0..17)]  # Peter Luschny, Apr 27 2013

(PARI)  x='x+O('x^66); v=Vec(serlaplace( 1/(cos(2*x)-sin(2*x)) ) ) \\ Joerg Arndt, Apr 27 2013

CROSSREFS

Equals 2^n * A001586(n).

Sequence in context: A059435 A192621 A143923 * A224152 A174356 A121357

Adjacent sequences:  A079855 A079856 A079857 * A079859 A079860 A079861

KEYWORD

nonn,easy

AUTHOR

Michael Somos, Jan 20 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 19:13 EST 2016. Contains 278683 sequences.