

A079850


a(1) = 1 and then the smallest primes such that all a(k)a(j) are distinct composite numbers.


3



1, 5, 11, 19, 31, 47, 71, 103, 151, 227, 277, 389, 463, 541, 599, 733, 797, 887, 1087, 1217, 1361, 1579, 1693, 1861, 2129, 2267, 2887, 3137, 3301, 3389, 3967, 4133, 4567, 4801, 5021, 5581, 5879, 6983, 7027, 7333, 8123, 8677, 8971, 9949, 10289, 10937
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Zak Seidov, Table of n, a(n) for n = 1..200


MATHEMATICA

CompositeQ[n_] := ! (Abs[n] == 1  PrimeQ[n]); f[l_List] := Block[{pi = 1, d = Subtract @@@ Subsets[l, {2}], p}, While[p = Prime[pi]; Intersection[d, l  p] != {}  Nand @@ (CompositeQ /@ (l  p)), pi++ ]; Append[l, p]]; Nest[f, {1}, 46] (* Ray Chandler *)


CROSSREFS

Cf. A079851, A079852.
Sequence in context: A106068 A164566 A075322 * A065995 A023245 A125003
Adjacent sequences: A079847 A079848 A079849 * A079851 A079852 A079853


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Feb 18 2003


EXTENSIONS

Extended by Ray Chandler, Feb 12 2007


STATUS

approved



