login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079773 a(n) = 2*a(n-1)+15*a(n-2) with n>0, a(0)=0, a(1)=1. 8
0, 1, 2, 19, 68, 421, 1862, 10039, 48008, 246601, 1213322, 6125659, 30451148, 152787181, 762341582, 3816490879, 19068105488, 95383574161, 476788730642, 2384331073699, 11920493107028, 59605952319541, 298019301244502 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,15)

FORMULA

G.f.: x/((1+3*x)*(1-5*x)).

a(n) = (5^n-(-3)^n)/8.

a(n) = sum(k=1..n, binomial(n, 2*k-1)*4^(2*(k-1))).

E.g.f.: exp(x)*sinh(4*x)/4. - Paul Barry, Jul 09 2003

a(n+1) = Sum_{k = 0..n} A238801(n,k)*4^k. - Philippe Deléham, Mar 07 2014

MATHEMATICA

Join[{a=0, b=1}, Table[c=2*b+15*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)

CoefficientList[Series[x / ((1 + 3 x) (1 - 5 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *)

PROG

(Sage) [lucas_number1(n, 2, -15) for n in range(0, 23)] # Zerinvary Lajos, Apr 22 2009

(MAGMA) [(5^n-(-3)^n)/8: n in [0..25]]; // Vincenzo Librandi, Aug 05 2013

CROSSREFS

Cf. A051958, A015441.

Sequence in context: A218547 A232537 A309341 * A217082 A024220 A024389

Adjacent sequences:  A079770 A079771 A079772 * A079774 A079775 A079776

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Feb 20 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 15:50 EDT 2020. Contains 336255 sequences. (Running on oeis4.)