This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079730 Kolakoski variation using (1,2,3,4) starting with 1,2. 2
 1, 2, 2, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 1, 2, 3, 4, 4, 1, 1, 2, 2, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 1, 2, 3, 3, 4, 4, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 1, 1, 1, 1, 2, 3, 4, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(1)=1 then a(n) is the length of n-th run. This kind of Kolakoski variation using(1,2,3,4,...,m) as m grows reaches the Golomb's sequence A001462. LINKS Ivan Neretin, Table of n, a(n) for n = 1..10000 FORMULA Partial sum sequence is expected to be asymptotic to 5/2*n. EXAMPLE Sequence begins: 1,2,2,3,3,4,4,4,1,1,1,2,2,2,2,3,3,3,3, read it as: (1),(2,2),(3,3),(4,4,4),(1,1,1),(2,2,2,2),(3,3,3,3),... then count the terms in parentheses to get: 1,2,2,3,3,4,4,.. which is the same sequence. MATHEMATICA seed = {1, 2, 3, 4}; w = {}; i = 1; Do[   w = Join[w,     Array[seed[[Mod[i - 1, Length[seed]] + 1]] &,      If[i > Length[w], seed, w][[i]]]];   i++   , {n, 41}]; w CROSSREFS Cf. A000002. Sequence in context: A252759 A085654 A074719 * A035486 A282347 A172397 Adjacent sequences:  A079727 A079728 A079729 * A079731 A079732 A079733 KEYWORD nonn AUTHOR Benoit Cloitre, Feb 17 2003 EXTENSIONS Corrected by Ivan Neretin, Apr 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 19:20 EDT 2018. Contains 313955 sequences. (Running on oeis4.)