login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079727 a(n) = 1 + C(2,1)^3 + C(4,2)^3 + ... + C(2n,n)^3. 10
1, 9, 225, 8225, 351225, 16354233, 805243257, 41229480825, 2172976383825, 117106008311825, 6423711336265041, 357470875526646609, 20131502573232075025, 1145190201805448075025, 65706503254247744075025 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) seems to have an interesting congruence property: For p prime, a(p)==8 (mod p) if and only if p == 3, 5, 7, or 13 (mod 14); i.e., iff p=7 or p is in A003625.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..556

FORMULA

a(n) = Sum_{k=0..n} binomial(2*k,k)^3.

G.f.: hypergeom([1/2, 1/2, 1/2], [1, 1], 64*x)/(1-x). - Vladeta Jovovic, Feb 18 2003

G.f.: hypergeom([1/4,1/4],[1],64*x)^2/(1-x). - Mark van Hoeij, Nov 17 2011

Recurrence: (n+2)^3*a(n+2)-(5*n+8)*(13*n^2+38*n+28)*a(n+1)+8*(2n+3)^3*a(n)=0. - Emanuele Munarini, Nov 15 2016

a(n) ~ 2^(6*n+6) / (63*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 16 2016

MATHEMATICA

Table[Sum[Binomial[2 k, k]^3, {k, 0, n}], {n, 0, 14}] (* Michael De Vlieger, Nov 15 2016 *)

PROG

(PARI) a(n)=sum(k=0, n, binomial(2*k, k)^3)

(Maxima) makelist(sum(binomial(2*k, k)^3, k, 0, n), n, 0, 12); /* Emanuele Munarini, Nov 15 2016 */

(MAGMA) [&+[Binomial(2*k, k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 16 2016

CROSSREFS

Cf. A002476.

Cf. Sum_{k = 0..n} binomial(2*k, k)^m: A006134 (m=1), A115257 (m=2), this sequence (m=3).

Sequence in context: A012831 A012749 A188662 * A251579 A128492 A294971

Adjacent sequences:  A079724 A079725 A079726 * A079728 A079729 A079730

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Feb 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 22:25 EST 2018. Contains 299387 sequences. (Running on oeis4.)