login
A079687
(C(p^2,p)-p)/p^5 where p runs through the primes >= 5.
1
17, 5111, 7927612775, 24714600869783, 838633076672151525749, 8025069697755928177400519, 1612990320517347385446263283163679, 22309322605621796769355335902183065180877656319, 758915078354229792321195176392493745120601433104095
OFFSET
1,1
COMMENTS
a(10) is 65 digits long. - Harvey P. Dale, Apr 04 2011
FORMULA
a(n) = (binomial(p^2,p)-p)/p^5 with p = prime(n+2).
MAPLE
f:= n -> (binomial(n^2, n)-n)/n^5:
seq(f(ithprime(i)), i=3..19); # Robert Israel, Oct 15 2024
MATHEMATICA
(Binomial[#^2, #]-#)/#^5&/@Prime[Range[3, 12]] (* Harvey P. Dale, Apr 04 2011 *)
CROSSREFS
Cf. A000040.
Sequence in context: A357419 A238610 A052286 * A362434 A062659 A195813
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 31 2003
EXTENSIONS
Additional term provided by Harvey P. Dale, Apr 04 2011
STATUS
approved