login
A079666
Least k such that the distance from k^2 to closest prime = n or zero if no k exists.
1
1, 3, 8, 17, 12, 11, 18, 51, 200, 59, 238, 41, 276, 165, 104, 281, 214, 397, 348, 159, 650, 305, 778, 923, 2242, 1155, 1090, 911, 822, 1871, 1280, 1099, 1516, 3253, 2578, 5849, 3538, 693, 4010, 1937, 1284, 5095, 3212, 2011, 6268, 6331, 2160, 1943, 12470, 13443, 12836, 7405, 25428, 7115, 22596, 10873
OFFSET
1,2
COMMENTS
From Robert Israel, Jan 03 2017: (Start)
For n > 1, a(n) == n (mod 2) unless it is 0.
a(191) > 3*10^7 if it is not 0. (End)
LINKS
MAPLE
N:= 100: # for a(1)..a(N)
R[1]:= 1: count:= 1:
for k from 3 while count < N do
d:= min(nextprime(k^2)-k^2, k^2-prevprime(k^2));
if d <= N and not assigned(R[d]) then R[d]:= k; count:= count+1 fi
od:
seq(R[i], i=1..N); # Robert Israel, Jan 03 2017
PROG
(PARI) a(n)=if(n<0, 0, s=1; while(abs(n-min(abs(precprime(s^2)-s^2), abs(nextprime(s^2)-s^2)))>0, s++); s)
CROSSREFS
Sequence in context: A196373 A027291 A048952 * A193684 A308850 A368273
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 26 2003
EXTENSIONS
More terms from Robert Israel, Jan 03 2017
STATUS
approved