login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079639 Matrix product of Stirling1-triangle A008275(n,k) and unsigned Lah-triangle |A008297(n,k)|. 2
1, 1, 1, 2, 3, 1, 4, 11, 6, 1, 14, 40, 35, 10, 1, 38, 184, 195, 85, 15, 1, 216, 840, 1204, 665, 175, 21, 1, 600, 4920, 7616, 5369, 1820, 322, 28, 1, 6240, 26616, 54116, 44016, 18669, 4284, 546, 36, 1, 9552, 197856, 392460, 383480, 191205, 54453, 9030, 870, 45, 1, 319296, 1177176, 3229776, 3449600, 2017070, 679371, 139293, 17490, 1320, 55, 1, -519312 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Also the Bell transform of A006252(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

LINKS

Table of n, a(n) for n=1..67.

FORMULA

T(n, k) = Sum_{i=k..n} A008275(n, i) * |A008297(i, k)|.

E.g.f: (1+x)^(y/(1-log(1+x))). - Vladeta Jovovic, Nov 22 2003

MAPLE

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

BellMatrix(n -> add(k!*combinat:-stirling1(n+1, k), k=0..n+1), 9); # Peter Luschny, Jan 26 2016

MATHEMATICA

BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

rows = 12;

B = BellMatrix[Function[n, Sum[k!*StirlingS1[n+1, k], {k, 0, n+1}]], rows];

Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 27 2018, after Peter Luschny *)

CROSSREFS

Cf. A006252 (first column).

Sequence in context: A084608 A078990 A176566 * A104694 A125182 A318685

Adjacent sequences:  A079636 A079637 A079638 * A079640 A079641 A079642

KEYWORD

sign,tabl

AUTHOR

Vladeta Jovovic, Jan 30 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 07:27 EDT 2019. Contains 321345 sequences. (Running on oeis4.)