The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079639 Matrix product of Stirling1-triangle A008275(n,k) and unsigned Lah-triangle |A008297(n,k)|. 2
 1, 1, 1, 2, 3, 1, 4, 11, 6, 1, 14, 40, 35, 10, 1, 38, 184, 195, 85, 15, 1, 216, 840, 1204, 665, 175, 21, 1, 600, 4920, 7616, 5369, 1820, 322, 28, 1, 6240, 26616, 54116, 44016, 18669, 4284, 546, 36, 1, 9552, 197856, 392460, 383480, 191205, 54453, 9030, 870, 45, 1, 319296, 1177176, 3229776, 3449600, 2017070, 679371, 139293, 17490, 1320, 55, 1, -519312 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Also the Bell transform of A006252(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016 LINKS FORMULA T(n, k) = Sum_{i=k..n} A008275(n, i) * |A008297(i, k)|. E.g.f: (1+x)^(y/(1-log(1+x))). - Vladeta Jovovic, Nov 22 2003 MAPLE # The function BellMatrix is defined in A264428. # Adds (1, 0, 0, 0, ..) as column 0. BellMatrix(n -> add(k!*combinat:-stirling1(n+1, k), k=0..n+1), 9); # Peter Luschny, Jan 26 2016 MATHEMATICA BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[Function[n, Sum[k!*StirlingS1[n+1, k], {k, 0, n+1}]], rows]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 27 2018, after Peter Luschny *) CROSSREFS Cf. A006252 (first column). Sequence in context: A084608 A078990 A176566 * A104694 A125182 A318685 Adjacent sequences:  A079636 A079637 A079638 * A079640 A079641 A079642 KEYWORD sign,tabl AUTHOR Vladeta Jovovic, Jan 30 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 05:46 EDT 2021. Contains 343121 sequences. (Running on oeis4.)