login
A079582
Least positive k such that the distance from k to closest prime = n.
0
2, 1, 9, 26, 93, 118, 119, 120, 531, 532, 897, 1140, 1339, 1340, 1341, 1342, 1343, 1344, 9569, 15702, 15703, 15704, 15705, 19632, 19633, 19634, 19635, 31424, 31425, 31426, 31427, 31428, 31429, 31430, 31431, 31432, 31433, 155958, 155959, 155960, 155961
OFFSET
0,1
COMMENTS
This sequence only differs from A077019 for n = 2: a(2) = 9 whereas A077019(2) = 0. - Rémy Sigrist, Dec 19 2019
MATHEMATICA
a[n_] := Block[{s = 1}, While[ PrimeQ[s] || Min[s - NextPrime[s, -1], NextPrime[s] - s] != n, s++ ]; s]; a[0] = 2; Table[a[n], {n, 0, 40}]
PROG
(PARI) a(n)=if(n<0, 0, s=1; while(abs(n-min(abs(precprime(s)-s), abs(nextprime(s)-s)))>0, s++); s)
CROSSREFS
Sequence in context: A094633 A261060 A144244 * A259872 A320534 A012892
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 26 2003
EXTENSIONS
More terms from Robert G. Wilson v, Jan 27 2003
Name clarified by Rémy Sigrist, Dec 19 2019
STATUS
approved