login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079526 a(n) = floor( exp(H_n)*log(H_n) ) - sigma(n). 3
-1, -2, -1, -2, 2, -2, 4, 0, 4, 2, 10, -3, 13, 6, 9, 4, 20, 2, 23, 4, 17, 16, 31, -3, 29, 21, 26, 13, 42, 3, 46, 18, 36, 32, 41, 1, 57, 38, 45, 14, 65, 14, 69, 32, 41, 51, 78, 5, 75, 42, 66, 43, 90, 27, 78, 33, 76, 70, 103, -2, 107, 76, 71, 51, 98, 41, 120, 65, 98, 53 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

M. Kaneko has shown that the Riemann hypothesis is equivalent to the assertion that a(n) > 0 for n > 60.

LINKS

Table of n, a(n) for n=1..70.

J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543.

MATHEMATICA

f[n_] := Floor[Exp[HarmonicNumber[n]]Log[HarmonicNumber[n]]] - DivisorSigma[1, n]; Array[f, 70] (* Robert G. Wilson v, Dec 17 2016 *)

CROSSREFS

H_n = sum of harmonic series (see A002387), sigma(n) = A000203.

Cf. A057641, A058209, A079527.

Sequence in context: A108954 A123920 A029170 * A291708 A163822 A029203

Adjacent sequences:  A079523 A079524 A079525 * A079527 A079528 A079529

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Jan 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 21:09 EDT 2018. Contains 316505 sequences. (Running on oeis4.)