login
A079504
a(n) = 8*n^3*((2*n-1)^2 - 4*n + 4).
2
0, 8, 320, 3672, 18944, 65000, 174528, 397880, 806912, 1498824, 2600000, 4269848, 6704640, 10141352, 14861504, 21195000, 29523968, 40286600, 53980992, 71168984, 92480000, 118614888, 150349760, 188539832, 234123264, 288125000, 351660608, 425940120
OFFSET
0,2
REFERENCES
L. U. Uko, A census of prime-order uniform step magic squares, Abstracts Amer. Math. Soc., Vol. 24, No. 1, 2003, #983-05-194.
FORMULA
From G. C. Greubel, Jan 18 2019: (Start)
G.f.: 8*x*(1 +34*x +234*x^2 +194*x^3 +17*x^4)/(1-x)^6.
E.g.f.: 8*x*(1 +19*x +57*x^2 +32*x^3 +4*x^4)*exp(x). (End)
MATHEMATICA
Table[8*n^3*((2*n-1)^2-4*n+4), {n, 0, 30}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1, {0, 8, 320, 3672, 18944, 65000}, 30] (* G. C. Greubel, Jan 18 2019 *)
PROG
(PARI) vector(30, n, n--; 8*n^3*((2*n-1)^2-4*n+4)) \\ G. C. Greubel, Jan 18 2019
(Magma) [8*n^3*((2*n-1)^2-4*n+4): n in [0..30]]; // G. C. Greubel, Jan 18 2019
(Sage) [8*n^3*((2*n-1)^2-4*n+4) for n in (0..30)] # G. C. Greubel, Jan 18 2019
(GAP) List([0..30], n -> 8*n^3*((2*n-1)^2-4*n+4)); # G. C. Greubel, Jan 18 2019
CROSSREFS
Cf. A079503.
Sequence in context: A231781 A220618 A221721 * A282621 A300189 A227657
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 21 2003
STATUS
approved