This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079499 Total number of parts in all partitions of n into distinct odd parts. 5
 0, 1, 0, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 7, 6, 10, 12, 13, 12, 16, 18, 22, 22, 25, 32, 36, 36, 42, 50, 53, 58, 64, 76, 83, 88, 99, 116, 123, 132, 147, 168, 181, 194, 215, 240, 262, 280, 306, 346, 375, 396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Also sum of the sizes of the Durfee squares of all self-conjugate partitions of n. Example: a(13)=7 because there are three self-conjugate partitions of 13, namely [7,1,1,1,1,1,1], [5,3,3,1,1] and [4,4,3,2], having Durfee squares of sizes 1,3 and 3, respectively. a(n)=sum(k*A116422(n,k),k=1..floor(sqrt(n))). - Emeric Deutsch, Feb 14 2006 REFERENCES G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28). G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78). A. Knopfmacher and N. Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 FORMULA G.f.: sum x^(2k-1)/(1+x^(2k-1); k=1..inf * prod (1+x^(2m-1); m=1..inf Sum_{k>0} (k*x^(k^2)/Product_{j=1..k} (1-x^(2*j))). - Vladeta Jovovic, Aug 06 2004 G.f.=sum(kx^(k^2)/product(1-x^(2i),i =1..k),k=1..infinity). - Emeric Deutsch, Feb 14 2006 EXAMPLE a(13)=7 because the partitions of 13 into distinct odd parts are [13], [9,3,1] and [7,5,1] and we have 1+3+3=7 parts. MAPLE g:=sum(k*x^(k^2)/product(1-x^(2*i), i =1..k), k=1..20):gser:=series(g, x=0, 52): seq(coeff(gser, x, n), n=0..50); - Emeric Deutsch, Feb 14 2006 CROSSREFS Cf. A015723, A000700, A067619, A006128. Cf. A032021. Cf. A116422. Sequence in context: A188440 A216327 A099875 * A166235 A143591 A085063 Adjacent sequences:  A079496 A079497 A079498 * A079500 A079501 A079502 KEYWORD nonn,changed AUTHOR Arnold Knopfmacher (arnoldk(AT)cam.wits.ac.za), Jan 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 19 01:49 EDT 2013. Contains 225428 sequences.