|
|
A079446
|
|
Integers k such that phi(k)*(k-phi(k))+1 is prime.
|
|
3
|
|
|
2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 23, 25, 27, 28, 29, 31, 32, 37, 41, 43, 47, 50, 52, 53, 55, 56, 57, 59, 61, 67, 68, 71, 72, 73, 77, 78, 79, 81, 83, 89, 92, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110, 113, 115, 116, 127, 131, 137, 139, 145
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Includes all primes. - Robert Israel, Oct 25 2017
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
phi(8)=4, so 4*(8-4)+1=17.
|
|
MAPLE
|
filter:= proc(n) local p;
p:= numtheory:-phi(n);
isprime(p*(n-p)+1)
end proc:
select(filter, [$1..1000]); # Robert Israel, Oct 25 2017
|
|
MATHEMATICA
|
Select[Range[150], PrimeQ[EulerPhi[#]*(# - EulerPhi[#]) + 1] &] (* G. C. Greubel, Jan 18 2019 *)
|
|
PROG
|
(PARI) for (n=2, 100, if (isprime(eulerphi(n)*(n-eulerphi(n))+1), print1(n", ")))
|
|
CROSSREFS
|
Cf. A079445.
Sequence in context: A038701 A127072 A056781 * A322546 A283262 A115975
Adjacent sequences: A079443 A079444 A079445 * A079447 A079448 A079449
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jon Perry, Jan 09 2003
|
|
EXTENSIONS
|
More terms from Michel Marcus, Mar 17 2014
|
|
STATUS
|
approved
|
|
|
|