%I
%S 0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,1,1,0,1,0,
%T 0,0,1,1,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,0
%N Binary expansion of the Chaitin Omega number Omega_U.
%C This is the halting probability of a certain universal Chaitin (self-delimiting Turing) machine U.
%C The full (infinite precision) number is random and noncomputable.
%C The machine used is NOT universal, since each data bit is given in ASCII and contributes 7 bits to the program length. - _John Tromp_, Mar 23 2009
%D G. J. Chaitin, THE LIMITS OF MATHEMATICS, Springer-Verlag London, 2003, http://www.umcs.maine.edu/~chaitin/inv.html - _John Tromp_, Mar 23 2009
%H C. C. Calude, M. J. Dinneen and C.-K. Shu, <a href="http://www.emis.de/journals/EM/expmath/volumes/11/11.html">Computing a glimpse of randomness</a>, Exper. Math., 11 (2002), 361-370.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChaitinsConstant.html">Chaitin's Constant</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%K nonn,nice,cons,base,hard
%O 0,1
%A _N. J. A. Sloane_, Feb 15 2003
|