Asymptotic of the coefficients A079330 / A088989

(Václav Kotěšovec, published Aug 20 2014)
The positive solutions of the equation $\tan (x)=x$ can be written explicitly in series form as

$$
x_{k}=\frac{\pi}{2}+\pi k-\sum_{n=1}^{\infty} \frac{d_{2 n-1}}{\left(\frac{\pi}{2}+\pi k\right)^{2 n-1}}
$$

Coefficients can be found by series reversion of the series for $x+\cot (x)$, (see [1] for more).
Several first coefficients d_{n} are

$$
\begin{aligned}
& \text { CoefficientList [InverseSeries [Series }[1 /(x+\operatorname{Cot}[x]),\{x, 0,16\}], x], x] \\
& \left\{0,1,0, \frac{2}{3}, 0, \frac{13}{15}, 0, \frac{146}{105}, 0, \frac{781}{315}, 0, \frac{16328}{3465}, 0, \frac{6316012}{675675}, 0, \frac{38759594}{2027025}\right\}
\end{aligned}
$$

Numerators and denominators of the sequence $d_{2 n-1}$ are in the OEIS, see A079330 and A088989.

Main result:

$$
d_{2 n-1}=\frac{\operatorname{A079330}(n)}{\operatorname{A088989}(n)} \sim \frac{\Gamma(1 / 3)}{2^{2 / 3} 3^{1 / 6} \pi^{5 / 3}} * \frac{\left(\frac{\pi}{2}\right)^{2 n}}{n^{4 / 3}}
$$

where Γ is the Gamma function

Proof: We have an implicit function

$$
f(x, y)=y+\cot (y)-\frac{1}{x}
$$

Second partial derivative $\frac{\partial}{\partial y} \frac{\partial}{\partial y} f(x, y)$ at the point $\left[\frac{2}{\pi}, \frac{\pi}{2}\right]$ is zero. In such case is not possible to apply theorem by Bender (see [3]), but asymptotic can be found using the Kotěšovec's extension of Bender's formula (see [2]).

notation in the theorem	partial derivatives		$r=2 / \pi, s=\pi / 2$
F_{z}	$\frac{\partial}{\partial x} f(x, y)$	$\frac{1}{x^{2}}$	$f_{x}(r, s)=\frac{\pi^{2}}{4}$
F_{w}	$\frac{\partial}{\partial y} f(x, y)$	$1-\frac{1}{\sin ^{2}(y)}$	$f_{y}(r, s)=0$
$F_{w w}$	$\frac{\partial}{\partial y} \frac{\partial}{\partial y} f(x, y)$	$\frac{2 * \cot (y)}{\sin ^{2}(y)}$	$f_{y y}(r, s)=0$
$F_{w w w}$	$\frac{\partial}{\partial y} \frac{\partial}{\partial y} \frac{\partial}{\partial y} f(x, y)$	$-\frac{2}{\sin ^{4}(y)}-\frac{4 * \cot ^{2}(y)}{\sin ^{2}(y)}$	$f_{y y y}(r, s)=-2$

We have the system of equations:

$$
f(r, s)=s+\cot (s)-\frac{1}{r}=0 \quad f_{y}(r, s)=1-\frac{1}{\sin ^{2}(s)}=0
$$

Roots are:

$$
r=\frac{1}{s}=\frac{1}{\frac{\pi}{2}+k \pi} \quad s=\frac{\pi}{2}+k \pi
$$

where k is integer.
Asymptotically is dominant only such root r, whose absolute value is minimal.

We have two dominant solutions

$$
r=\frac{2}{\pi} \quad s=\frac{\pi}{2}
$$

and

$$
\begin{gathered}
r=-\frac{2}{\pi} \quad s=-\frac{\pi}{2} \\
d_{n} \sim A_{1}+A_{2}
\end{gathered}
$$

where A_{1} and A_{2} are partial asymptotic.
From my theorem (see [2]) follows

$$
\begin{gathered}
A_{1} \sim \frac{1}{3 \Gamma\left(\frac{2}{3}\right) n r^{n}}\left(-\frac{6 r F_{z}}{n F_{w w w}}\right)^{1 / 3}=\frac{\Gamma\left(\frac{1}{3}\right)}{2 \pi \sqrt{3} n r^{n}}\left(-\frac{6 r f_{x}(r, s)}{n f_{y y y}(r, s)}\right)^{1 / 3}=\frac{\Gamma\left(\frac{1}{3}\right)}{2 \pi \sqrt{3} n\left(\frac{2}{\pi}\right)^{n-1 / 3}}\left(\frac{3 \pi^{2}}{4 n}\right)^{1 / 3}=\frac{\Gamma\left(\frac{1}{3}\right)}{2^{4 / 3} \pi^{2 / 3} 3^{1 / 6} n^{4 / 3}}\left(\frac{\pi}{2}\right)^{n} \\
A_{2}=-(-1)^{n} * A_{1}
\end{gathered}
$$

Now

$$
d_{n} \sim 0 \quad \text { if } n \text { is even }
$$

and

$$
d_{n} \sim 2 A_{1} \text { if } n \text { is odd }
$$

After reindexing (odd terms only)

$$
n \rightarrow 2 n-1
$$

$$
d_{2 n-1} \sim 2 * \frac{\Gamma\left(\frac{1}{3}\right)}{2^{4 / 3} \pi^{2 / 3} 3^{1 / 6}(2 n-1)^{4 / 3}} *\left(\frac{\pi}{2}\right)^{2 n-1} \sim \frac{\Gamma\left(\frac{1}{3}\right)}{2^{1 / 3} \pi^{2 / 3} 3^{1 / 6}(2 n)^{4 / 3}} *\left(\frac{\pi}{2}\right)^{2 n-1}=\frac{\Gamma\left(\frac{1}{3}\right)}{2^{2 / 3} \pi^{5 / 3} 3^{1 / 6} n^{4 / 3}} *\left(\frac{\pi}{2}\right)^{2 n}
$$

Numerical verification (ratio tends to 1):

$$
\text { ListPlot }\left[\text { Table } \left[\mathrm{dj}[[n]] /\left(\frac{\pi^{2 n-\frac{5}{3}} \operatorname{Gamma}\left[\frac{1}{3}\right]}{3^{1 / 6} n^{4 / 3} 2^{2 n+\frac{2}{3}}}\right),\{n, 1, \text { Length[dj]\}]]}\right.\right.
$$

References:

[1] Weisstein, Eric W. (and D. W. Cantrell), Tanc Function, MathWorld
[2] V. Kotěšovec, Asymptotic of implicit functions if Fww = 0, extension of theorem by Bender, website 19.1.2014
Theorem (V. Kotěšovec, 2013), see [3]
With same notation and same conditions as in theorem by Bender (see below), but if $F_{w w}=0$ and $F_{w w w} \neq 0$ then

$$
a_{n} \sim \frac{1}{3 \Gamma\left(\frac{2}{3}\right) n r^{n}} *\left(-\frac{6 r F_{z}}{n F_{w w w}}\right)^{1 / 3}
$$

where Γ is the Gamma function
r is the radius of convergence
F_{z} is partial derivative of the function $F(z, w)$ at the point $[r, s]$
$F_{w w w}$ is third partial derivative of the function $F(z, w)$ at the point $[r, s]$
[3] Edward A. Bender, "Asymptotic methods in enumeration" (1974), p. 502
ThEOREM 5. Assume that the power series $w(z)=\sum a_{n} z^{n}$ with nonnegative coefficients satisfies $F(z, w) \equiv 0$. Suppose there exist real numbers $r>0$ and $s>a_{0}$ such that
(i) for some $\delta>0, F(z, w)$ is analytic whenever $|z|<r+\delta$ and $|q|<s+\delta$;
(ii) $F(r, s)=F_{w}(r, s)=0$;
(iii) $F_{z}(r, s) \neq 0$, and $F_{w w}(r, s) \neq 0$: and
(iv) if $|z| \leqq r,|w| \leqq s$, and $F(z, w)=F_{w}(z, w)=0$, then $z=r$ and $w=s$.

Then
(7.1)

$$
a_{n} \sim\left(\left(r F_{z}\right) /\left(2 \pi F_{w w}\right)\right)^{1 / 2} n^{-3 / 2} r^{-n}
$$

where the partial derivatives F_{z} and $F_{w w}$ are evaluated at $z=r, w=s$.
[4] OEIS - The On-Line Encyclopedia of Integer Sequences
Sequences A079330 and A088989, first root x_{1} A115365

Related books and articles:

[5] Watson, G. N., "Treatise on the Theory of Bessel Functions", 2nd ed., p. 502, 1922
[6] Young, R. M., "A Rayleigh Popular Problem", American Mathematical Monthly 93, pp. 660-664, 1986
[7] Watson, G. N., "Du Bois Reymond's Constants", Quarterly Journal of Mathematics 4, pp. 140-146, 1933
[8] Weisstein, Eric W., Du Bois Reymond Constants, MathWorld
[9] Finch, S. R. "Du Bois Reymond's Constants", Mathematical Constants, 3.12, pp. 237-240, 2003
Du Bois Reymond's Constants: A062546 (c2), A224196 (c3), A207528 (c4), A243108 (c5), A245333 (c6).

