

A079318


a(0) = 1; for n > 0, a(n) = (3^(A000120(n)1) + 1)/2.


2



1, 1, 1, 2, 1, 2, 2, 5, 1, 2, 2, 5, 2, 5, 5, 14, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14, 41, 14, 41, 41, 122, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

For n>=1, a(n) mod 2 = A010060(n), the ThueMorse sequence  Benoit Cloitre, Mar 23 2004


REFERENCES

Alex Fink, Aviezri S. Fraenkel and Carlos Santos, LIM is not slim, International Journal of Game Theory, May 2013
D. Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 27.


LINKS

Table of n, a(n) for n=0..90.
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n1)1) for n >= 2.]
D. Singmaster, On the cellular automaton of Ulam and Warburton, 2003 [Cached copy, included with permission]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS


FORMULA

a(n)=sum(i+j+k=n, {n!/(i!*j!*k!)} mod 2 ) and 0<=k<=j<=i<=n.  Benoit Cloitre, Jul 02 2004


EXAMPLE

Contribution from Omar E. Pol, Jul 18 2009: (Start)
If written as a triangle:
1;
1;
1,2;
1,2,2,5;
1,2,2,5,2,5,5,14;
1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41;
1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41,2,5,5,14,5,14,14,41,5,14,14,41,14,41,41,122;
(End)


CROSSREFS

Cf. A079314A079319.
Cf. A092255.
Sequence in context: A089408 A208888 A258783 * A050315 A128978 A145862
Adjacent sequences: A079315 A079316 A079317 * A079319 A079320 A079321


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Feb 12 2003


STATUS

approved



