login
A079221
Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=0, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the five-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).
4
1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 0, 0, 0, 1, 6, 2, 1, 0, 5, 1, 15, 0, 0, 0, 20, 0, 1, 36, 5, 0, 1, 65, 0, 0, 1, 108, 0, 2, 0, 190, 0, 0, 0, 1, 301, 11, 0, 0, 501, 0, 0, 0, 0, 1, 814, 0, 0, 0, 1265, 0, 0, 0, 0, 0, 1, 2080, 26, 3, 2, 3105, 1, 0, 0, 0, 5, 0, 1, 5223, 0, 0, 0, 7695, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,4
COMMENTS
Note: the counts given here are inclusive, i.e. T(n,d) includes also the count A079217(n,d).
MAPLE
[seq(A079221(n), n=0..119)]; A079221 := n -> PFixedByA057511(A003056(n)+1, 5, A002262(n)+1);
CROSSREFS
The row sums equal to the left edge shifted left once = A079226 = fifth row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079222 and A003056 and A002262.
Sequence in context: A099557 A214576 A079217 * A168019 A026794 A137712
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen Jan 03 2002
STATUS
approved