login
A079220
Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the four-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).
3
1, 1, 1, 2, 2, 1, 5, 5, 0, 1, 11, 14, 0, 4, 1, 30, 36, 1, 14, 0, 1, 82, 102, 0, 48, 0, 0, 1, 233, 293, 0, 153, 0, 0, 0, 1, 680, 860, 2, 488, 0, 2, 0, 0, 1, 2033, 2575, 0, 1550, 1, 0, 0, 4, 0, 1, 6164, 7838, 0, 4920, 0, 0, 0, 0, 0, 0, 1, 18923, 24148, 5, 15672, 0, 5, 0, 14, 0, 0, 0, 1
OFFSET
0,4
COMMENTS
Note: the counts given here are inclusive, i.e. T(n,d) includes also the count A079218(n,d).
MAPLE
[seq(A079220(n), n=0..119)]; A079220 := n -> PFixedByA057511(A003056(n)+1, 4, A002262(n)+1);
CROSSREFS
The row sums equal to the left edge shifted left once = A079225 = fourth row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079222 and A003056 & A002262.
Sequence in context: A099605 A288421 A079218 * A158068 A210879 A176265
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen Jan 03 2002
STATUS
approved