login
A079219
Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=0, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the three-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).
5
1, 1, 1, 2, 0, 1, 3, 1, 3, 1, 8, 0, 9, 0, 1, 18, 2, 22, 0, 0, 1, 43, 0, 60, 0, 0, 0, 1, 104, 5, 159, 1, 0, 3, 0, 1, 273, 0, 428, 0, 0, 0, 0, 0, 1, 702, 14, 1143, 0, 1, 9, 0, 0, 0, 1, 1870, 0, 3114, 0, 0, 0, 0, 0, 0, 0, 1, 4985, 38, 8505, 2, 0, 28, 0, 0, 3, 0, 0, 1, 13562, 0, 23475, 0, 0, 0, 0
OFFSET
0,4
COMMENTS
Note: the counts given here are inclusive, i.e. T(n,d) includes also the count A079217(n,d).
MAPLE
[seq(A079219(n), n=0..119)]; A079219 := n -> PFixedByA057511(A003056(n)+1, 3, A002262(n)+1);
CROSSREFS
The row sums equal to the left edge shifted left once = A079224 = third row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079222 and A003056 and A002262.
Sequence in context: A342720 A029274 A239498 * A197707 A253668 A216220
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen Jan 03 2002
STATUS
approved