%I #6 Jul 10 2011 18:42:31
%S 1,4,2,2,8,34,952,2,1,14,6,211,283,13570,31843561
%N Number of isomorphism classes of anti-commutative closed binary operations on a set of order n, listed by class size.
%C A079188(n)+A079191(n)=A079171(n).
%C Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
%C First four rows: 1; 4,2; 2,8,34,952; 2,1,14,6,211,283,13570,31843561
%C A079189(x) is equal to the sum of the products of each element in row x of this sequence and the corresponding element of A079210.
%C The sum of each row x of this sequence is given by A079190(x).
%H C. van den Bosch, <a href="http://cosmos.ucc.ie/~cjvdb1/html/binops.shtml">Closed binary operations on small sets</a>
%H <a href="/index/Gre#groupoids">Index entries for sequences related to groupoids</a>
%Y Cf. A079188, A079189, A079190.
%K nonn,tabf
%O 1,2
%A Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003