login
Number of anti-commutative closed binary operations (groupoids) on a set of order n.
5

%I #10 Jan 23 2022 20:03:37

%S 1,1,8,5832,764411904,32000000000000000,669462604992000000000000000,

%T 10090701947420325348336258984797490118656,

%U 149274165541848061518941637595308945760198454444667437056,2832386113499265897149023834314938475799908379160975581551362823935905234944

%N Number of anti-commutative closed binary operations (groupoids) on a set of order n.

%H Andrew Howroyd, <a href="/A079189/b079189.txt">Table of n, a(n) for n = 0..20</a>

%H C. van den Bosch, <a href="http://cosmos.ucc.ie/~cjvdb1/html/binops.shtml">Closed binary operations on small sets</a>

%H <a href="/index/Gre#groupoids">Index entries for sequences related to groupoids</a>

%F a(n) = (n^n)*((n^2-n)^((n^2-n)/2)).

%F a(n) = A002489(n) - A079186(n).

%F a(n) = Sum_{k>=1} A079191(n,k)*A079210(n,k).

%F a(n) = A023813(n)*A023813(n-1).

%o (PARI) a(n) = (n^n)*((n^2-n)^((n^2-n)/2)) \\ _Andrew Howroyd_, Jan 23 2022

%Y Cf. A023813, A079186, A079190 (isomorphism classes), A079191, A079210.

%K nonn

%O 0,3

%A Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

%E Edited and extended by _Christian G. Bower_, Dec 12 2003

%E a(0)=1 prepended, a(8) corrected and a(9) added by _Andrew Howroyd_, Jan 23 2022