%I #10 Jan 23 2022 16:13:56
%S 0,0,8,13851,3530555392,266023223876953125,
%T 9644962193498535546171949056,
%U 246832875573638552740275218239438131202951,6127827569844832702316847785612357470342156990019367075840,193794664362053647720926884692597177807303542565053791345764052714030485961865
%N Number of non-anti-commutative closed binary operations on a set of order n.
%H Andrew Howroyd, <a href="/A079186/b079186.txt">Table of n, a(n) for n = 0..20</a>
%H C. van den Bosch, <a href="http://cosmos.ucc.ie/~cjvdb1/html/binops.shtml">Closed binary operations on small sets</a>
%H <a href="/index/Gre#groupoids">Index entries for sequences related to groupoids</a>
%F a(n) = n^(n^2) - (n^n)*((n^2-n)^((n^2-n)/2)).
%F a(n) = A002489(n) - A079189(n).
%F a(n) = Sum_{k>=1} A079178(n,k)*A079210(n,k).
%o (PARI) a(n) = n^(n^2) - (n^n)*((n^2-n)^((n^2-n)/2)) \\ _Andrew Howroyd_, Jan 23 2022
%Y Cf. A002489, A079187 (non-isomorphic), A079188, A079189, A079210.
%K nonn
%O 0,3
%A Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
%E a(0)=0 prepended and terms a(5) and beyond from _Andrew Howroyd_, Jan 23 2022