login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079153 Primes p such that both p-1 and p+1 have at most 3 prime factors, counted with multiplicity; i.e., primes p such that bigomega(p-1) <= 3 and bigomega(p+1) <= 3, where bigomega(n) = A001222(n). 4
2, 3, 5, 7, 11, 13, 19, 29, 43, 67, 173, 283, 317, 653, 787, 907, 1867, 2083, 2693, 2803, 3413, 3643, 3677, 4253, 4363, 4723, 5443, 5717, 6197, 6547, 6653, 8563, 8573, 9067, 9187, 9403, 9643, 10733, 11443, 11587, 12163, 12917, 13997, 14107, 14683, 15187 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sum of reciprocals ~ 1.495. There are 3528 primes of this kind <= 10^7.

From a(7) = 19 onward, this sequence is identical to A063644(n-6). - Robin Saunders, Sep 22 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1100

EXAMPLE

907 is in the sequence because both 907-1 = 2*3*151 and 907+1 = 2*2*227 have 3 prime factors.

MAPLE

filter:= p -> isprime(p) and numtheory:-bigomega(p-1) <= 3 and numtheory:-bigomega(p+1) <= 3:

select(filter, [2, seq(2*i+1, i=1..10^4)]); # Robert Israel, Nov 11 2014

MATHEMATICA

Select[Prime[Range[2000]], Max[PrimeOmega[#+{1, -1}]]<4&] (* Harvey P. Dale, Oct 07 2015 *)

PROG

(PARI) s(n) = {sr=0; ct=0; forprime(x=2, n, if(bigomega(x-1) < 4 && bigomega(x+1) < 4, print1(x" "); sr+=1.0/x; ct+=1; ); ); print(); print(ct" "sr); } \\ Lists primes p<=n such that both p-1 and p+1 have at most 3 prime factors.

CROSSREFS

Intersection of A079150 and A079151. Cf. A079152.

Sequence in context: A222565 A113188 A242738 * A020616 A275272 A329954

Adjacent sequences:  A079150 A079151 A079152 * A079154 A079155 A079156

KEYWORD

easy,nonn

AUTHOR

Cino Hilliard, Dec 27 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 2 18:43 EDT 2020. Contains 333189 sequences. (Running on oeis4.)