The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079124 Number of ways to partition n into distinct positive integers <= phi(n), where phi is Euler's totient function (A000010). 7
 1, 1, 0, 1, 0, 2, 0, 4, 1, 5, 1, 11, 0, 17, 4, 13, 13, 37, 2, 53, 13, 51, 35, 103, 10, 135, 78, 167, 89, 255, 4, 339, 253, 378, 306, 542, 121, 759, 558, 872, 498, 1259, 121, 1609, 1180, 1677, 1665, 2589, 808, 3250, 1969, 3844, 3325, 5119, 1850, 6268, 4758, 7546, 7070 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 REFERENCES Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997.  MathEduc Database (Zentralblatt MATH, 1997c.01891). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501. FORMULA a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): mn, 0, b(n-i, i-1))))     end: a:= n-> b(n, phi(n)): seq(a(n), n=0..100);  # Alois P. Heinz, May 11 2015 MATHEMATICA b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[n, EulerPhi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *) PROG (Haskell) a079124 n = p [1 .. a000010 n] n where    p _      0 = 1    p []     _ = 0    p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m -- Reinhard Zumkeller, Jul 05 2013 CROSSREFS Cf. A079126, A000009, A079122, A079125, A067953. Cf. A227296, A036998. Sequence in context: A020781 A327883 A007432 * A242071 A176910 A243981 Adjacent sequences:  A079121 A079122 A079123 * A079125 A079126 A079127 KEYWORD nonn AUTHOR Reinhard Zumkeller, Dec 27 2002 EXTENSIONS a(0)=1 prepended by Alois P. Heinz, May 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 19:52 EDT 2020. Contains 336381 sequences. (Running on oeis4.)