login
A079007
a(n) = smallest prime p_k such that the n successive differences between the primes p_k through p_(k+n) are all distinct.
10
2, 2, 2, 17, 83, 113, 491, 1367, 1801, 5869, 15919, 34883, 70639, 70657, 214867, 214867, 2515871, 3952733, 13010143, 30220163, 60155567, 69931991, 203674907, 1092101119, 1363592621, 1363592677, 2124140323, 23024158649, 30282104173, 30282104173, 196948778371
OFFSET
0,1
EXAMPLE
a(0) = 2; a(1) = 2 from {2,3} with a single difference 1; a(2) = 2 from {2,3,5}, with two distinct differences 1, 2.
a(5) = p_30 = 113 because 113 is followed by 127, 131, 137, 139, 149, with 5 different differences: 14, 4, 6, 2, 10; and no smaller prime has this property.
MATHEMATICA
f[k_, n_] := Block[{p = Table[ Prime[i], {i, k, k + n - 1}]}, Length[ Union[Drop[p, 1] - Drop[p, -1]]]]; k = 1; Do[ While[ f[k, n] != n - 1, k++ ]; Print[ Prime[k]], {n, 1, 22}]
CROSSREFS
Cf. A001223, A068843, A053597, A078515. Different from A079889.
Sequence in context: A346079 A195871 A214756 * A349642 A064215 A358633
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 03 2002
EXTENSIONS
Edited by Robert G. Wilson v and N. J. A. Sloane, Jan 05 2002
More terms from Don Reble, Jan 15 2003
a(27)-a(30) from Donovan Johnson, Oct 23 2012
STATUS
approved