login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079006 Expansion of q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q. 24

%I #90 Oct 09 2023 11:50:50

%S 1,-2,5,-10,18,-32,55,-90,144,-226,346,-522,777,-1138,1648,-2362,3348,

%T -4704,6554,-9056,12425,-16932,22922,-30848,41282,-54946,72768,-95914,

%U 125842,-164402,213901,-277204,357904,-460448,590330,-754368,960948,-1220370

%N Expansion of q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C The Lagrange series reversion of Sum_{n >= 1} a(n-1)*x^n is Sum_{n >= 1} A002103(n-1)*x^n. See the example in A002103. - _Wolfdieter Lang_, Jul 09 2016

%D A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).

%H Seiichi Manyama, <a href="/A079006/b079006.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)

%H A. Cayley, <a href="/A001934/a001934.pdf">A memoir on the transformation of elliptic functions</a>, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]

%H H. R. P. Ferguson, D. E. Nielsen and G. Cook, <a href="http://dx.doi.org/10.1090/S0025-5718-1975-0367322-8">A partition formula for the integer coefficients of the theta function nome</a>, Math. Comp., 29 (1975), 851-855.

%H R. Fricke, <a href="http://dx.doi.org/10.1007/978-3-642-20954-3_1">Die elliptischen Funktionen und ihre Anwendungen</a>, Dritter Teil, Springer-Verlag, 2012, eq. (8), p. 11 with eq. (2), p. 10.

%H Nicco, <a href="https://math.stackexchange.com/questions/1428124/">Conjectured identity of the product of two theta functions</a>, Math Stackexchange, Sep 09 2015.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F a(n) = (2/n)*Sum_{k=1..n} (-1)^k*A046897(k)*a(n-k). - _Vladeta Jovovic_, Dec 24 2002

%F Expansion of q^(-1/4) * (1/2) * k^(1/2) in powers of q, where k^2 is the parameter and q the Jacobi nome of elliptic functions.

%F Expansion of (1/(2*q)) * (1 - sqrt(k')) / (1 + sqrt(k')) in powers of q^4, where k'^2 is the complementary parameter and q the Jacobi nome of elliptic functions. See the Fricke reference.

%F Expansion of psi(x^2) / phi(x) = psi(x)^2 / phi(x)^2 = psi(x^2)^2 / psi(x)^2 = psi(-x)^2 / phi(-x^2)^2 = chi(-x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x^2)^2) = 1 / (chi(x)^4 * chi(-x)^2) = f(-x^4)^2 / f(x)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.

%F Euler transform of period 4 sequence [-2, 4, -2, 0, ...].

%F G.f. A(x) satisfies A(x)^2 = A(x^2) / (1 + 4 * x * A(x^2)^2). - _Michael Somos_, Mar 19 2004

%F Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (1 + 4 * v^2) - v. - _Michael Somos_, Jul 09 2005

%F Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3 * (u6 + u2)^2 - u2*u6. - _Michael Somos_, Jul 09 2005

%F G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - (-x)^k))^2.

%F Expansion of continued fraction 1 / (1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...))) in powers of x^4. - _Michael Somos_, Sep 01 2005

%F Given g.f. A(x), then B(q) = 2 * q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4 . - _Michael Somos_, Jan 01 2006

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A189925.

%F Convolution inverse of A029839. Convolution square of A083365. a(n) = (-1)^n * A001936(n).

%F G.f.: 1/Q(0), where Q(k)= 1 - x^(k+1/2) + (x^((k+1)/4) + x^((3*k+3)/4))^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 02 2013

%F a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(7/2)*n^(3/4)). - _Vaclav Kotesovec_, Jul 04 2016

%F Given g.f. A(x), and B(x) is the g.f. for A008441, then A(x) = B(x^2) / B(x) and A(x) * A(x^2) * A(x^4) * ... = 1 / B(x). - _Michael Somos_, Apr 20 2017

%F Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 + x^1)^2 / (1 - x^3 + x^2*(1 + x^2)^2 / (1 - x^5 + x^3*(1 + x^3)^2 / ...))) in powers of x^2. - _Michael Somos_, Apr 20 2017

%F a(n) = A208933(4*n+1) - A215348(4*n+1) (conjectured). - _Thomas Baruchel_, May 14 2018

%F A(x^4) = (1/(m*x)) * ( chi(x)^m - chi(-x)^m ) / ( chi(x)^m + chi(-x)^m ) at m = 2, where chi(x) = Product_{i >= 0} (1 + x^(2*i+1)) is the g.f. of A000700. The formula gives generating functions related to A092869 when m = 1 and A001938 (also A093160) when m = 4. - _Peter Bala_, Sep 23 2023

%e G.f. A(x) = 1 - 2*x + 5*x^2 - 10*x^3 + 18*x^4 - 32*x^5 + 55*x^6 - 90*x^7 + 144*x^8 + ...

%e G.f. B(q) = q * A(q^4) = q - 2*q^5 + 5*q^9 - 10*q^13 + 18*q^17 - 32*q^21 + 55*q^25 - 90*q^29 + ...

%t a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^2, {x, 0, n}]; (* _Michael Somos_, Jul 08 2011 *)

%t a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ (m / 16 / q)^(1/4), {q, 0, n}]]; (* _Michael Somos_, Jul 08 2011 *)

%t QP = QPochhammer; s = (QP[q]*(QP[q^4]^2/QP[q^2]^3))^2 + O[q]^40; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 23 2015 *)

%t nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^4 / (1+x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 04 2016 *)

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^2 / QPochhammer[ -x]^2, {x, 0, n}]; (* _Michael Somos_, Apr 19 2017 *)

%o (PARI) {a(n) = my(N, A); if( n<0, 0, N = (sqrtint(16*n + 1) + 1)\2; A = contfracpnqn( matrix(2, N, i, j, if( i==1, if( j<2, 1 + O(x^(N^2 + N)), (x^(j-1) + x^(3*j - 3))^2), 1 - x^(4*j - 2)))); polcoeff( A[2,1] / A[1,1], 4*n))}; /* _Michael Somos_, Sep 01 2005 */

%o (PARI) {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m = 1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x*A^2))); polcoeff(A, n))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^2, n))};

%Y Cf. A000700, A001936, A002103, A008441, A029839, A046897, A083365, A127391, A127392, A189925.

%K sign,easy

%O 0,2

%A _Michael Somos_, Dec 22 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 12:27 EDT 2024. Contains 371912 sequences. (Running on oeis4.)