login
A078963
Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,6,2).
2
3313, 4993, 5851, 9613, 17971, 23011, 32353, 36913, 45121, 51421, 53881, 54403, 59611, 76243, 90001, 91951, 127591, 130633, 131431, 134353, 140401, 142963, 174061, 229753, 246913, 267661, 303361, 311551, 321313, 340111, 386143, 435553
OFFSET
1,1
COMMENTS
Equivalently, p, p+6, p+10, p+16 and p+18 are consecutive primes.
Subsequence of A078856. - R. J. Mathar, May 06 2017
LINKS
EXAMPLE
23011 is in the sequence since 23011, 23017, 23021, 23027 and 23029 are consecutive primes.
MAPLE
L:= [2, 3, 5, 7, 11]:
count:= 0: Res:= NULL:
while count < 50 do
L:= [op(L[2..5]), nextprime(L[5])];
if L - [L[1]$5] = [0, 6, 10, 16, 18] then
count:= count+1;
Res:= Res, L[1];
fi
od:
Res; # Robert Israel, Jun 04 2018
MATHEMATICA
Transpose[Select[Partition[Prime[Range[50000]], 5, 1], Differences[#]=={6, 4, 6, 2}&]][[1]] (* Harvey P. Dale, Mar 04 2011 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 19 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 20 2002
STATUS
approved