login
A078948
Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,4,2).
2
29, 59, 269, 1289, 2129, 2789, 5639, 8999, 13679, 14549, 18119, 36779, 62129, 75989, 80669, 83219, 88799, 93479, 113159, 115769, 124769, 132749, 150209, 160079, 163979, 203309, 207509, 223829, 228509, 278489, 282089, 284729, 298679
OFFSET
1,1
COMMENTS
Equivalently, p, p+2, p+8, p+12 and p+14 are consecutive primes.
Subsequence of A078848. - R. J. Mathar, Feb 10 2013
All terms are congruent to 29 (mod 30). - Muniru A Asiru, Sep 04 2017
EXAMPLE
59 is in the sequence since 59, 61, 67, 71 and 73 are consecutive primes.
MAPLE
for i from 1 to 10^5 do if [ithprime(i+1), ithprime(i+2), ithprime(i+3), ithprime(i+4)] = [ithprime(i)+2, ithprime(i)+8, ithprime(i)+12, ithprime(i)+14] then print(ithprime(i)); fi; od; # Muniru A Asiru, Sep 04 2017
PROG
(GAP)
K:=26*10^7+1;; # to get all terms <= K.
P:=Filtered([1, 3..K], IsPrime);; I:=[2, 6, 4, 2];;
P1:=List([1..Length(P)-1], i->P[i+1]-P[i]);;
Q:=List(Positions(List([1..Length(P)-Length(I)], i->[P1[i], P1[i+1], P1[i+2], P1[i+3]]), I), i->P[i]); # Muniru A Asiru, Sep 04 2017
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 19 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 20 2002
STATUS
approved