login
Primes p such that p, p+2, p+6, p+12 and p+14 are consecutive primes.
31

%I #33 Sep 08 2022 08:45:08

%S 17,227,1277,1607,3527,3917,4637,4787,27737,38447,39227,44267,71327,

%T 97367,99707,113147,122027,122387,124337,165707,183497,187127,191447,

%U 197957,198827,275447,290657,312197,317957,347057,349397,416387,418337

%N Primes p such that p, p+2, p+6, p+12 and p+14 are consecutive primes.

%C Subsequence of A078847. - _R. J. Mathar_, Feb 10 2013

%H T. D. Noe, <a href="/A078946/b078946.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeTriplet.html">Prime Triplet</a>.

%e 227 is in the sequence since 227, 229, 233, 239 and 241 are consecutive primes.

%t Rest@ Select[Prime@ Range@ 36000, AllTrue[{2, 6, 12, 14} + #, PrimeQ] &] (* _Michael De Vlieger_, Apr 18 2015, Version 10 *)

%t Select[Partition[Prime[Range[36000]],5,1],Differences[#]=={2,4,6,2}&][[All,1]] (* _Harvey P. Dale_, Jun 14 2022 *)

%o (PARI) isok(p) = isprime(p) && (nextprime(p+1)==p+2) && (nextprime(p+3)== p+6) && (nextprime(p+7)==p+12) && (nextprime(p+13)==p+14); \\ _Michel Marcus_, Dec 10 2013

%o (Magma) [p: p in PrimesInInterval(7,1000000) | forall{i: i in [2,6,12,14] | IsPrime(p+i)}]; // _Vincenzo Librandi_, Apr 19 2015

%Y Subsequence of A128468.

%Y Cf. A001223, A078866, A078867, A078947-A078971, A022006, A022007.

%K nonn

%O 1,1

%A _Labos Elemer_, Dec 19 2002

%E Edited by _Dean Hickerson_, Dec 20 2002