This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078927 Smallest s for which there are exactly n primitive Pythagorean triangles with perimeter 2s; i.e., smallest s such that A078926(s) = n. 3
 6, 858, 7140, 158730, 771342, 3120180, 9699690, 31651620, 119584290, 198843645, 229474245, 406816410, 281291010, 1412220810, 1673196525, 3457939485, 3234846615, 4360010655, 4573403835, 4127218095, 11532931410, 12929686770, 101268227775 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A Pythagorean triangle is a right triangle whose edge lengths are all integers; such a triangle is 'primitive' if the lengths are relatively prime. LINKS Derek J. C. Radden and Peter T. C. Radden, Table of n, a(n) for n=1..39 (terms 1 through 15 were computed by Derek J. C. Radden) EXAMPLE a(2)=858; the primitive Pythagorean triangles with edge lengths (364, 627, 725) and (195, 748, 773) both have perimeter 2*858 = 1716. MATHEMATICA oddpart[n_] := If[OddQ[n], n, oddpart[n/2]]; ct[p_] := Length[Select[Divisors[oddpart[p/2]], p/2<#^2

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 12:57 EDT 2019. Contains 327198 sequences. (Running on oeis4.)