

A078868


Decimal concatenations of the quadruples (d1,d2,d3,d4) with elements in {2,4,6} for which there exists a prime p >= 5 such that the differences between the 5 consecutive primes starting with p are (d1,d2,d3,d4).


5



2424, 2462, 2466, 2642, 2646, 2664, 2666, 4242, 4246, 4264, 4624, 4626, 4662, 4666, 6246, 6264, 6266, 6424, 6426, 6462, 6466, 6626, 6642, 6646, 6662, 6664
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..26.


EXAMPLE

4624 corresponds to the quadruple (4,6,2,4). It is in the sequence because the 5 consecutive primes 1597, 1601, 1607, 1609 and 1613 have differences (4,6,2,4).


MATHEMATICA

With[{k = 4}, FromDigits /@ Select[Tuples[Range[2, 6, 2], k], Function[m, Count[Range[k, 10^k], n_ /; Times @@ Boole@ Map[PrimeQ, Prime@ n + Accumulate@ m] == 1] > 0]]] (* Michael De Vlieger, Mar 25 2017 *) (* or *)
FromDigits /@ Union@ Select[ Partition[ Differences@ Prime@ Range[3, 2000], 4, 1], Max@ # <= 6 &] (* Giovanni Resta, Mar 25 2017 *)


CROSSREFS

The least primes corresponding to the quadruples are in A078866. The same primes, in increasing order, are in A078867. The sequences of primes corresponding to the 26 difference patterns are in A022006 (for 2424), A022007 (for 4242) and A078946A078970. The similarly defined quintuples are in A078870. Cf. A001223.
Sequence in context: A254908 A257203 A156120 * A186874 A202201 A147984
Adjacent sequences: A078865 A078866 A078867 * A078869 A078870 A078871


KEYWORD

fini,full,base,nonn


AUTHOR

Labos Elemer, Dec 19 2002


EXTENSIONS

Edited by Dean Hickerson, Dec 20 2002


STATUS

approved



