login
Sums of the antidiagonals of the table of k-almost primes (A078840).
14

%I #34 Oct 08 2022 00:01:26

%S 1,2,7,19,44,95,195,395,794,1583,3172,6334,12665,25313,50596,101180,

%T 202326,404635,809227,1618410,3236766,6473474,12946903,25893723,

%U 51787365,103574668,207149213,414298342,828596584,1657193052,3314385970

%N Sums of the antidiagonals of the table of k-almost primes (A078840).

%C A k-almost prime is a positive integer that has exactly k prime factors counted with multiplicity.

%H Robert G. Wilson v, <a href="/A078842/b078842.txt">Table of n, a(n) for n = 0..140</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">k-Almost Prime</a>.

%F a(n) = Sum_{i=0..n-1} A078840(i+1, n-i).

%e a(3) = 19 = 5 (3rd prime) + 6 (2nd 2-almost prime) + 8 (first 3-almost prime).

%t f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Plus @@@ Table[t[[n - k + 1, k]], {n, 30}, {k, n, 1, -1}] (* Or *)

%t AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* _Eric W. Weisstein_ Feb 07 2006 *)

%t AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Sum[ AlmostPrime[k, n - k + 1], {k, n}], {n, 150}] (* _Robert G. Wilson v_, Feb 11 2006 *)

%Y Cf. A078840, A078841, A078843, A078844, A078845, A078846.

%K nonn

%O 0,2

%A _Benoit Cloitre_ and _Paul D. Hanna_, Dec 11 2002

%E a(12)-a(30) from _Robert G. Wilson v_, Feb 11 2006