|
|
A078822
|
|
Number of distinct binary numbers contained as substrings in the binary representation of n.
|
|
29
|
|
|
1, 1, 3, 2, 4, 4, 5, 3, 5, 5, 5, 6, 7, 7, 7, 4, 6, 6, 6, 7, 7, 6, 8, 8, 9, 9, 9, 9, 10, 10, 9, 5, 7, 7, 7, 8, 7, 8, 9, 9, 9, 9, 7, 9, 11, 10, 11, 10, 11, 11, 11, 11, 12, 11, 11, 12, 13, 13, 13, 13, 13, 13, 11, 6, 8, 8, 8, 9, 8, 9, 10, 10, 9, 8, 10, 11, 11, 12, 12, 11, 11, 11, 11, 12, 10, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
For k>0: a(2^k-2)=2*(k-1)+1, a(2^k-1)=k, a(2^k)=k+2;
for k>1: a(2^k+1)=k+2;
for k>0: a(2^k-1)=A078824(2^k-1), a(2^k)=A078824(2^k).
For n>0: 0<a(2*n)-a(n)<=A070939(n)+1, 0<a(2*n+1)-a(n) < A070939(n). - Reinhard Zumkeller, Mar 07 2008
Row lengths in triangle A119709. - Reinhard Zumkeller, Aug 14 2013
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..16384 (first 1001 terms from Reinhard Zumkeller)
|
|
EXAMPLE
|
n=10 -> '1010' contains 5 different binary numbers: '0' (b0bb or bbb0), '1' (1bbb or bb1b), '10' (10bb or bb10), '101' (101b) and '1010' itself, therefore a(10)=5.
|
|
MAPLE
|
a:= n-> (s-> nops({seq(seq(parse(s[i..j]), i=1..j),
j=1..length(s))}))(""||(convert(n, binary))):
seq(a(n), n=0..85); # Alois P. Heinz, Jan 20 2021
|
|
MATHEMATICA
|
a[n_] := (id = IntegerDigits[n, 2]; nd = Length[id]; Length[ Union[ Flatten[ Table[ id[[j ;; k]], {j, 1, nd}, {k, j, nd}], 1] //. {0, b__} :> {b}]]); Table[ a[n], {n, 0, 85}] (* Jean-François Alcover, Dec 01 2011 *)
|
|
PROG
|
(Haskell)
a078822 = length . a119709_row
import Numeric (showIntAtBase)
-- Reinhard Zumkeller, Aug 13 2013, Sep 14 2011
(PARI) a(n) = {vb = binary(n); vf = []; for (i=1, #vb, for (j=1, #vb - i + 1, pvb = vector(j, k, vb[i+k-1]); f = subst(Pol(pvb), x, 2); vf = Set(concat(vf, f)); ); ); #vf; } \\ Michel Marcus, May 08 2016
|
|
CROSSREFS
|
Cf. A078823, A078826, A078824, A007088, A141297, A144623, A144624.
Sequence in context: A322348 A321232 A326015 * A224980 A154392 A069745
Adjacent sequences: A078819 A078820 A078821 * A078823 A078824 A078825
|
|
KEYWORD
|
nonn,base,nice,look
|
|
AUTHOR
|
Reinhard Zumkeller, Dec 08 2002
|
|
STATUS
|
approved
|
|
|
|