login
a(n) = smallest Fibonacci number > a(n-1) such that a(1) + ... + a(n) is prime.
1

%I #12 May 20 2014 23:39:51

%S 2,3,8,34,144,46368,8944394323791464,16641027750620563662096,

%T 298611126818977066918552,

%U 146178119651438213260386312206974243796773058,1065113236465588309403889415460645093083860991848425732542338227915288346612042420944981983005010603735148681490199640832

%N a(n) = smallest Fibonacci number > a(n-1) such that a(1) + ... + a(n) is prime.

%C a(12) to a(17) are approximately 3.132021800*10^349, 1.533208298*10^370, 8.068341610*10^400, 1.144126295*10^609, 1.293644115*10^4898, 1.000900690*10^5142 respectively. - _Robert Israel_, May 20 2014

%F a(n) = A000045(A078743(n)). _Robert Israel_, May 20 2014

%e a(1)=2, the smallest Fibonacci number to be prime. The smallest Fibonacci number >2 that yields a prime when added to 2 is 3, so a(2)=3. The smallest Fibonacci number > 3 that yields a prime when added to 2+3 is 8 so a(3)=8.

%p N:= 14; # to get the first N terms

%p fib:= combinat[fibonacci]:

%p a[1]:= 3: s:= fib(3): count:= 1:

%p for i from 4 while count < N do

%p if isprime(s+fib(i)) then

%p count:= count+1;

%p a[count]:= i;

%p s:= s + fib(i);

%p fi

%p od:

%p seq(fib(a[i]), i=1..N); # _Robert Israel_, May 20 2014

%Y Cf. A000045, A078727, A078743.

%K nonn

%O 1,1

%A _Neil Fernandez_, Dec 21 2002

%E More terms from _Robert Israel_, May 20 2014