login
A078721
a(n) = prime(n*(n+1)/2 + 1).
11
2, 3, 7, 17, 31, 53, 79, 109, 157, 199, 263, 331, 401, 479, 577, 661, 773, 887, 1021, 1153, 1297, 1459, 1609, 1787, 1993, 2161, 2377, 2609, 2797, 3041, 3313, 3547, 3803, 4079, 4363, 4663, 4987, 5309, 5647, 5953, 6311, 6689, 7027, 7481, 7841, 8263, 8689
OFFSET
0,1
COMMENTS
Primes on the left side of the triangle formed by listing successively the prime numbers in a triangular grid:
2
3 5
7 11 13
17 19 23 29
31 37 41 43 47
53 59 61 67 71 73
The sum of the reciprocals appears to converge.
As the terms grow faster than the triangular numbers and the sum of inverse numbers converges, the sum of inverses indeed converges. - Joerg Arndt, Oct 28 2015
LINKS
FORMULA
a(n) = A000040(A000124(n)). - Altug Alkan, Oct 28 2015
a(n) = A151800(A011756(n)) for n >= 1. - Amiram Eldar, Sep 05 2024
MATHEMATICA
Table[Prime[n (n + 1)/2 + 1], {n, 0, 46}] (* Michael De Vlieger, Oct 28 2015 *)
Prime[#]&/@(Accumulate[Range[0, 50]]+1) (* Harvey P. Dale, Aug 04 2018 *)
PROG
(PARI) triprimes(n) = { sr = 0; for(j=0, n, x = j*(j+1)/2+1; z = prime(x); sr+=1.0/z; print1(z, ", "); ); print(); /* print(sr); */}
(Magma) [NthPrime(n*(n + 1) div 2+1): n in [0..50]]; // Vincenzo Librandi, Jun 08 2016
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Dec 20 2002
STATUS
approved