This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078703 Number of ways of subtracting twice a triangular number from a perfect square to obtain the integer n. 5
 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 1, 1, 4, 1, 2, 3, 1, 2, 2, 1, 1, 3, 3, 1, 2, 2, 1, 4, 1, 2, 3, 1, 2, 2, 1, 1, 4, 2, 1, 3, 2, 1, 4, 2, 1, 2, 1, 3, 3, 1, 2, 2, 2, 2, 2, 1, 1, 6, 2, 2, 2, 1, 2, 2, 2, 1, 4, 2, 1, 3, 1, 2, 4, 1, 1, 3, 2, 2, 4, 2, 2, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Also number of symmetric unimodal consecutive integer sequences that sum to the integer n (e.g., 4+5+6+5+4 = 24 = n). Also number of double trapezoidal arrangements of n objects; i.e., the number of ways to arrange n objects into symmetrically-placed, congruent isosceles trapezoids adjoined at overlapping largest bases. Also number of divisors of 4*n-1 of form 4*k+1 (or 4*k+3). - Vladeta Jovovic, Jan 05 2004. Therefore a(n) is one half of the number of divisors of A004767(n-1) (numbers 3 (mod 4)). - Wolfdieter Lang, Jul 29 2016 LINKS T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6. FORMULA SDT(n)=((r1+1)*(r2+1)*...*(rk+1))/2, where ((p1^r1)*(p2^r2)*...*(pk^rk)) is the factorization of 4n-1 into (odd) primes. G.f.: Sum_{n>0} x^n/(1-x^(4*n-1)). - Vladeta Jovovic, Jan 05 2004 a(n) = A034178(4*n - 1). - Michael Somos, May 11 2011 EXAMPLE SDT(34) = 4 since we have 34 or 11+12+11 or 6+7+8+7+6 or 2+3+4+5+6+5+4+3+2, Also 4*34 - 1 = 135 = (3^3)*(5^1) so that r1=3 and r2=1 (p1=3 and p2=5), resulting in SDT(34) = (3+1)*(1+1)/2 = 4. a(4) = 2 since 4 = 2^2 - 2*0 = 4^2 - 2*6. Also A034178(4*4 - 1) = 2 since 15 = 4^2 - 1^2 = 8^2 - 7^2. - Michael Somos, May 11 2011 G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 2*x^7 + x^8 + 2*x^9 + 2*x^10 + x^11 + ... Number of divisors of numbers 3 (mod 4) (see the Jovovic Jan 05 2004 comment): a(16) = 3 from the 2*3 = 6 divisors [1, 3, 7, 9, 21, 63] of 63 = A004767(15), being 1, -1, -1, 1, 1, -1 (mod 4). - Wolfdieter Lang, Jul 29 2016 MATHEMATICA This defines SDT(n): SDT[n_] := Length[Cases[Range[1, n], j_ /; Cases[Range[1, j], k_ /; Plus @@ Join[Range[k, j], Range[j - 1, k, -1]] == n] != {}]] The restricted factorization technique for obtaining SDT(n) is encoded as follows: SDT[n_] := (Times @@ Cases[FactorInteger[4 n - 1], {p_, r_} -> r + 1])/2 Rest[ CoefficientList[ Series[ Sum[x^k/(1 - x^(4k - 1)), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *) a[ n_] := If[ n < 1, 0, With[{m = 4 n - 1}, Sum[1 - Sign@Mod[m - k^2, 2 k], {k, Sqrt@m}]]]; (* Michael Somos, Aug 01 2016 *) PROG (PARI) {a(n) = if( n<1, 0, n = 4*n-1; sum(k=1, sqrtint(n), 0 == (n - k^2) % (2*k)))}; /* Michael Somos, Aug 01 2016 */ CROSSREFS Cf. A004767, A001227, A034178. Sequence in context: A079706 A250005 A319907 * A090629 A248623 A086412 Adjacent sequences:  A078700 A078701 A078702 * A078704 A078705 A078706 KEYWORD nonn AUTHOR R. L. Coffman, K. W. McLaughlin and R. J. Dawson (robert.l.coffman(AT)uwrf.edu), Dec 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 07:31 EDT 2019. Contains 327995 sequences. (Running on oeis4.)