login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078690 Continued fraction expansion of e^(2/5). 0
1, 2, 30, 12, 1, 1, 17, 90, 27, 1, 1, 32, 150, 42, 1, 1, 47, 210, 57, 1, 1, 62, 270, 72, 1, 1, 77, 330, 87, 1, 1, 92, 390, 102, 1, 1, 107, 450, 117, 1, 1, 122, 510, 132, 1, 1, 137, 570, 147, 1, 1, 152, 630, 162, 1, 1, 167, 690, 177, 1, 1, 182, 750, 192, 1, 1, 197, 810, 207 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..68.

G. Xiao, Contfrac

K. Matthews, Finding the continued fraction of e^(l/m)

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,2,0,0,0,0,-1).

FORMULA

for k>=0, a(5k+1)=15k+2 a(5k+2)=60k+30 a(5k+3)=15k+12 a(5k)=a(5k+4)=1.

G.f.: -(x^9-3*x^8-30*x^7-13*x^6+x^5-x^4-12*x^3-30*x^2-2*x-1) / ((x-1)^2*(x^4+x^3+x^2+x+1)^2). - Colin Barker, Jun 24 2013

MATHEMATICA

Block[{$MaxExtraPrecision=1000}, ContinuedFraction[E^(2/5), 70]] (* Harvey P. Dale, Sep 04 2011 *)

PROG

(PARI) contfrac(exp(2/5))

CROSSREFS

Cf. A069951.

Sequence in context: A058988 A292879 A267131 * A228937 A071056 A075716

Adjacent sequences:  A078687 A078688 A078689 * A078691 A078692 A078693

KEYWORD

cofr,nonn,easy

AUTHOR

Benoit Cloitre, Dec 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 05:21 EDT 2019. Contains 324318 sequences. (Running on oeis4.)