login
A078630
Numerators of coefficients of asymptotic expansion of probability p(n) (see A002816) in powers of 1/n.
4
1, -4, 0, 20, 58, 796, 7858, 40324, 140194, 2444744, 40680494, -7117319032, -149539443124, -223750776484, -4960419494993024, -46146161037854692, -689434674121075448, -132496988938839119444, -9686633414582239854958, -442788087926096759821484
OFFSET
0,2
LINKS
B. Aspvall and F. M. Liang, The dinner table problem, Technical Report CS-TR-80-829, Computer Science Department, Stanford, California, 1980.
EXAMPLE
p(n) = exp(-2)*(1 - 4/n + 20/(3n^3) + 58/(3n^4) + ...).
MATHEMATICA
t = 15;
y[n_]:=(1+Sum[Subscript[p, k]/n^k, {k, 1, t}]);
mul=1; start=9; If[t>9, mul=n^(t-9); start=t];
w=Apart[Expand[mul*Simplify[
y[n]*n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
-((3*n-30)*y[n-11]
+(6*n-45)*y[n-10]*(n-10)
+(5*n+18)*y[n-9]*(n-9)*(n-10)
-(8*n-139)*y[n-8]*(n-8)*(n-9)*(n-10)
-(26*n-204)*y[n-7]*(n-7)*(n-8)*(n-9)*(n-10)
-(4*n-30)*y[n-6]*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
+(26*n-148)*y[n-5]*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
+(8*n-74)*y[n-4]*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
-(9*n-18)*y[n-3]*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
-(2*n-15)*y[n-2]*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
+(n+2)*y[n-1]*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10))], n], n];
sol=Solve[Table[Coefficient[w, n, j]==0, {j, start, start-t+1, -1}]];
asympt=y[n]/.sol[[1]];
Table[Numerator[Coefficient[asympt, n, -j]], {j, 0, t}] (* Vaclav Kotesovec, Apr 06 2012 *)
CROSSREFS
Sequence in context: A284178 A286032 A199933 * A178671 A076021 A179270
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 13 2002
EXTENSIONS
Terms a(5)-a(19) from Vaclav Kotesovec, Apr 06 2012 (terms a(5)-a(7) were wrong, see A089222 for more information)
STATUS
approved