This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078480 Number of permutations p of {1,2,...,n} such that |p(i)-i| != 1 for all i. 5
 1, 1, 1, 2, 5, 21, 117, 792, 6205, 55005, 543597, 5922930, 70518905, 910711193, 12678337945, 189252400480, 3015217932073, 51067619064873, 916176426422089, 17355904144773970, 346195850534379613, 7252654441500887309 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS For positive n, a(n) equals the permanent of the n X n matrix with 0's along the superdiagonal and the subdiagonal, and 1's everywhere else. [John M. Campbell, Jul 09 2011] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 223. N. S. Mendelsohn, The asymptotic series for a certain class of permutation problems, Canadian Journal of Mathematics, vol. VIII, No.2, 1956, p.238 (Example 5). FORMULA G.f.: 1/(1-x^2)*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007 Asymptotic (N. S. Mendelsohn, 1956): a(n)/n! -> 1/e^2 Recurrence: a(n) = n*a(n-1) - (n-2)*a(n-3) - a(n-4), for n>=5 MATHEMATICA (* Explicit formula: *) Table[Sum[Sum[(-1)^k*(i-k)!*Binomial[2i-k, k], {k, 0, i}], {i, 0, n}], {n, 0, 21}] (* Vaclav Kotesovec, Mar 28 2011 *) CROSSREFS Cf. A000179, A000271. Column k=0 of A320582. Column k=1 of A306512. Sequence in context: A020129 A129582 A152576 * A212922 A243272 A139153 Adjacent sequences:  A078477 A078478 A078479 * A078481 A078482 A078483 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Jan 03 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 04:16 EDT 2019. Contains 321311 sequences. (Running on oeis4.)