The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078437 Decimal expansion of sum of alternating series of reciprocals of primes. 13
 2, 6, 9, 6, 0, 6, 3, 5, 1, 9, 7, 1, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Verified and extended by Chris K. Caldwell and Jud McCranie. Next two terms are most likely 4 and 5. - Robert Price, Sep 13 2011 From Jon E. Schoenfield, Nov 25 2018: (Start) Let f(k) be the k-th partial sum of the alternating series, i.e., f(k) = Sum_{j=1..k} ((-1)^(j+1))/prime(j). At large values of k, successive first differences f(k) - f(k-1) = ((-1)^(k+1))/prime(k) are alternatingly positive and negative and are nearly the same in absolute value, so f(k) is alternatingly above (for odd k) or below (for even k) the value of the much smoother function g(k) = (f(k-1) + f(k))/2 (a two-point moving average of the function f()). Additionally, since the first differences f(k) - f(k-1) are decreasing in absolute value, g(k) will be less than both g(k-1) and g(k+1) for odd k, and greater than both for even k; i.e., g(), although much smoother than f(), is also alternatingly below or above the value of the still smoother function h(k) = (g(k-1) + g(k))/2 = ((f(k-2) + f(k-1))/2 + (f(k-1) + f(k))/2)/2 = (f(k-2) + 2*f(k-1) + f(k))/4. Evaluated at k = 2^m for m = 1, 2, 3, ..., the values of h(k) converge fairly quickly toward the limit of the alternating series:                          h(k) =            k  (f(k-2) + 2*f(k-1) + f(k))/4   ==========  ============================            2     0.29166666666666666...            4     0.28095238095238095...            8     0.26875529011751921...           16     0.27058892362329746...           32     0.27009944617052797...           64     0.26963971020080367...          128     0.26959147218377685...          256     0.26959653902072193...          512     0.26960402179695026...         1024     0.26960568606633210...         2048     0.26960649673621509...         4096     0.26960645080540929...         8192     0.26960627432070023...        16384     0.26960633643086948...        32768     0.26960634835658329...        65536     0.26960635083481533...       131072     0.26960635144743392...       262144     0.26960635199009778...       524288     0.26960635199971603...      1048576     0.26960635195886861...      2097152     0.26960635197214933...      4194304     0.26960635197019215...      8388608     0.26960635197186919...     16777216     0.26960635197171149...     33554432     0.26960635197146884...     67108864     0.26960635197167534...    134217728     0.26960635197167145...    268435456     0.26960635197166927...    536870912     0.26960635197167200...   1073741824     0.26960635197167416...   2147483648     0.26960635197167454...   4294967296     0.26960635197167462... (End) REFERENCES S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98. LINKS Eric Weisstein's World of Mathematics, Prime Sums Eric Weisstein's World of Mathematics, Prime Zeta Function Wikipedia, Prime Zeta Function EXAMPLE 1/2 - 1/3 + 1/5 - 1/7 + 1/11 - 1/13 + ... = 0.26960635197167... MATHEMATICA s = NSum[ p=Prime[k//Round]; (-1)^k/p, {k, 1, Infinity}, WorkingPrecision -> 30, NSumTerms -> 5*10^7, Method -> "AlternatingSigns"]; RealDigits[s, 10, 14] // First (* Jean-François Alcover, Sep 02 2015 *) CROSSREFS Cf. A242301, A242302, A242303, A242304. Sequence in context: A021375 A190407 A057052 * A235997 A155678 A134946 Adjacent sequences:  A078434 A078435 A078436 * A078438 A078439 A078440 KEYWORD cons,hard,more,nonn AUTHOR G. L. Honaker, Jr., Dec 31 2002 EXTENSIONS Values of a(11)-a(14) = 7,1,6,7 from Robert Price, Sep 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 03:20 EST 2020. Contains 338632 sequences. (Running on oeis4.)