login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078371 (2*n+5)*(2*n+1). 17
5, 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, 725, 837, 957, 1085, 1221, 1365, 1517, 1677, 1845, 2021, 2205, 2397, 2597, 2805, 3021, 3245, 3477, 3717, 3965, 4221, 4485, 4757, 5037, 5325, 5621, 5925, 6237, 6557, 6885, 7221, 7565, 7917, 8277, 8645 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the generic form of D in the (nontrivially) solvable Pell equation x^2 - D*y^2 = +4. See A077428 and A078355.

Consider all primitive Pythagorean triples (a,b,c) with c-a=8, sequence gives values of a. (Corresponding values for b are A017113(n), while c follows A078370(n).) - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 19 2004

a(n) = A061037(2n+1) = (2n+3)^2-4. For A061037: a(2n+1)=(2n+1)*(2n+5) = (2n+3)^2-4. From Balmer spectrum of hydrogen. [Paul Curtz, Sep 24 2008]

From Vincenzo Librandi, Aug 08 2010: (Start)

The identity (4n^3+18n^2+24n+9)^2-(4n^2+12n+5)*(2n^2+6n+4)^2=1 (see Ramasamy's paper in link) can be written as A141530(n+2)^2-a(n)*A046092(n+1)^2 = 1.

a(n)^3+6*a(n)^2+9*a(n)+4 is a square: in fact a(n)^3+6*a(n)^2+9*a(n)+4 = (a(n)+1)^2*(a(n)+4) with a(n)=(2n+3)^2-4 (see Paul Curtz above). (End)

Products of two positive odd integers with difference 4, (ex. 1*5, 3*7, 5*9, 7*11, 9*13, ..). - Wesley Ivan Hurt, Nov 19 2013

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 578.

Index to sequences with linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = (2*n+5)*(2*n+1) = 8*(binomial(n+2, 2)-1)+5, hence subsequence of A004770 (5 (mod 8) numbers).

G.f.: (5+6*x-3*x^2)/(1-x)^3.

a(n) = 8*(n+1)+a(n-1), with n>0, a(0)=5. - Vincenzo Librandi, Aug 08 2010

MAPLE

seq((2*n+5)*(2*n+1), n=0..48); # (Deutsch)

MATHEMATICA

Table[(2n+5)(2n+1), {n, 0, 100}] (* Wesley Ivan Hurt, Nov 19 2013 *)

PROG

(PARI) lista(nn) = {for (n=0, nn, print1((2*n+1)*(2*n+5), ", ")); } \\ Michel Marcus, Nov 21 2013

CROSSREFS

Subsequence of A077425 (D values (not a square) for which Pell x^2 - D*y^2 = +4 is solvable in positive integers).

Cf. A017113, A078370.  Supersequence of A143206.

Sequence in context: A054286 A031292 A147331 * A049741 A166010 A146846

Adjacent sequences:  A078368 A078369 A078370 * A078372 A078373 A078374

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

EXTENSIONS

More terms from Emeric Deutsch, Feb 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 22 20:55 EDT 2014. Contains 247086 sequences.