login
A078361
Minimal positive solution a(n) of Pell equation a(n)^2 - D(n)*b(n)^2 = +4 or -4 with D(n)=A077425(n). The companion sequence is b(n)=A077058(n).
1
1, 3, 8, 5, 5, 46, 12, 64, 7, 7, 302, 39, 16, 25, 2136, 9, 9, 1000, 29, 11208, 20, 82, 261, 1552, 11, 11, 33710, 173, 3488, 190, 24, 61, 4354, 213, 23550, 13, 13, 124846, 1305, 136, 110, 3528264, 28, 1030190, 43, 93102, 73, 7688126, 15, 15, 46312, 77
OFFSET
1,2
COMMENTS
Computed from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values for the Diophantine eq. x^2 - x*y - ((D(n)-1)/4)*y^2= +1, resp., -1 if D(n)=A077425(n), resp, D(n)=A077425(n) and D(n) also in A077426 (this second case excludes in Perron's table the D values with a 'Teilnenner' in brackets).
The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions is a(n)=2*x(n)-y(n) and b(n)=y(n). If D(n)=A077425(n) is not in A077426 then the equation with -4 has no solution and a(n) and b(n) are the minimal solutions of the a(n)^2 - D(n)*b(n)^2 = +4 equation. If D(n)=A077425(n) is in A077426 then the a(n) and b(n) values are the minimal solution of the a(n)^2 - D(n)*b(n)^2 = -4 equation. In this case a(+,n)= a(n)^2+2 and b(+,n)=a(n)*b(n) are the minimal solution of a^2 - D(n)*b^2 = +4.
For Pell equation a^2 - D*b^2 = +4, see A077428 and A078355. For Pell equation a^2 - D*b^2 = -4, see A078356 and A078357.
REFERENCES
O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
EXAMPLE
29=D(5)=A077425(5) is A077426(4), hence a(5)=5 and b(5)=A077058(5)=1 solve a^2 - 29*b^2=-4 minimally and a(+,5)=a(5)^2+2=27 with b(+,5)=a(5)*b(5)=5*1=5 solve a^2 - 29*b^2=+4 minimally. See also A077428 with companion A078355.
21=D(4)=A077425(4) is not in A077426, hence a(4)=5 and b(4)=A077058(4)=1 give the solution with minimal positive b of a^2 - 21*b^2=+4.
CROSSREFS
Sequence in context: A166494 A140392 A140385 * A193014 A155676 A200243
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Nov 29 2002
EXTENSIONS
More terms from Matthew Conroy, Apr 20 2003
STATUS
approved