The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078341 Triangle read by rows: T(n,k) = n*T(n-1,k-1) + k*T(n-1,k) starting with T(0,0)=1. 1
 1, 0, 1, 0, 1, 2, 0, 1, 7, 6, 0, 1, 18, 46, 24, 0, 1, 41, 228, 326, 120, 0, 1, 88, 930, 2672, 2556, 720, 0, 1, 183, 3406, 17198, 31484, 22212, 5040, 0, 1, 374, 11682, 96040, 295004, 385144, 212976, 40320, 0, 1, 757, 38412, 489298, 2339380, 4965900 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Triangle of coefficients of polynomials P[n]. Let F(t) satisfy dF/dt = exp(x*(exp(F)-1)) and F(0)=0. Then F(t) = Sum_{n>=0} P[n]/n! t^n, where P[n] is a polynomial in x of degree n-1. The constant term of the polynomial is zero for n >= 2. The coefficient of x is 1 for n >= 2. The coefficient of x^n in P[n+1] is n!. The value at 1 is given by sequence A007549. LINKS FORMULA P=1; P[n+1] = x*(d/dx)P[n] + x*n*P[n]. EXAMPLE P=1, P=x, P=x+2*x^2, P=x+7*x^2+6*x^3, P=x+18*x^2+46*x^3+24*x^4, P=x+41*x^2+228*x^3+326*x^4+120*x^5. Rows start 1; 0,1; 0,1,2; 0,1,7,6; 0,1,18,46,24; 0,1,41,228,326,120; ... MAPLE P := 1; for n from 1 to 10 do P[n+1] := expand(x*diff(P[n], x)+x*n*P[n]) od; MATHEMATICA p[x_] = 1; p[n_][x_] := x*p[n-1]'[x] + x*(n-1)*p[n-1][x]; Table[ CoefficientList[ p[n][x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 29 2013 *) CROSSREFS Cf. A007549, A000142. Columns include A000007, A057427, A095151, A103768. Diagonals include A000142, A067318. Row sums are A007549. Sequence in context: A154974 A291820 A309124 * A199459 A316649 A065329 Adjacent sequences:  A078338 A078339 A078340 * A078342 A078343 A078344 KEYWORD easy,nonn,tabl AUTHOR F. Chapoton, Nov 22 2002 EXTENSIONS Additional comments from Henry Bottomley, Feb 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 02:13 EDT 2020. Contains 335475 sequences. (Running on oeis4.)