login
A078335
Decimal expansion of largest real root of e^x = Gamma(x+1).
5
5, 2, 9, 0, 3, 1, 6, 0, 9, 3, 1, 1, 9, 7, 7, 0, 7, 1, 0, 7, 2, 2, 2, 2, 5, 8, 1, 8, 6, 3, 1, 1, 7, 2, 7, 4, 7, 9, 9, 9, 8, 2, 0, 1, 8, 8, 3, 0, 7, 5, 4, 4, 2, 9, 2, 3, 9, 4, 6, 5, 3, 2, 5, 9, 5, 6, 1, 5, 5, 5, 0, 8, 9, 8, 7, 3, 3, 6, 1, 7, 9, 8, 1, 2, 3, 2, 3, 1, 6, 6, 7, 7, 0, 4, 2, 6, 6, 2, 0, 1, 0, 7, 9, 9, 6
OFFSET
1,1
COMMENTS
This number corresponds to the point where the Gamma function starts to exceed the exponential function.
FORMULA
Equals log(A330380). - Hugo Pfoertner, Jun 27 2024
EXAMPLE
x = 5.2903160931197707107222258186311727479998201883...
MATHEMATICA
digits = 105; x /. FindRoot[E^x == Gamma[x+1], {x, 5}, WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) solve(x=5.2, 5.3, exp(x)-gamma(1+x))
CROSSREFS
Cf. A330380.
Sequence in context: A046878 A375600 A357114 * A021658 A270859 A248749
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Nov 21 2002
EXTENSIONS
More terms from Benoit Cloitre, Nov 25 2002
STATUS
approved