login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078304 Generalized Fermat numbers: 7^(2^n)+1, n >= 0. 11

%I

%S 8,50,2402,5764802,33232930569602,1104427674243920646305299202,

%T 1219760487635835700138573862562971820755615294131238402

%N Generalized Fermat numbers: 7^(2^n)+1, n >= 0.

%C From _Daniel Forgues_, Jun 19 2011: (Start)

%C Generalized Fermat numbers F_n(a) := F_n(a,1) = a^(2^n)+1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for the current sequence) (Ribenboim (1996)).

%C All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994, 1998)). (This only expresses that the factors are odd, which means that it only applies to odd generalized Fermat numbers.) (End)

%H Vincenzo Librandi, <a href="/A078304/b078304.txt">Table of n, a(n) for n = 0..12</a>

%H Anders Björn and Hans Riesel, <a href="http://www.jstor.org/stable/2584996">Factors of Generalized Fermat Numbers</a>, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GeneralizedFermatNumber.html">Generalized Fermat Number</a>

%H OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>

%F a(0) = 8, a(n)=(a(n-1)-1)^2+1, n >= 1.

%F a(n) = 6*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 6*(empty product, i.e., 1)+ 2 = 8 = a(0). This means that the GCD of any pair of terms is 2. - _Daniel Forgues_, Jun 20 2011

%e a(0) = 7^1+1 = 8 = 6*(1)+2 = 6*(empty product)+2.

%e a(1) = 7^2+1 = 50 = 6*(8)+2.

%e a(2) = 7^4+1 = 2402 = 6*(8*50)+2.

%e a(3) = 7^8+1 = 5764802 = 6*(8*50*2402)+2.

%e a(4) = 7^16+1 = 33232930569602 = 6*(8*50*2402*5764802)+2.

%e a(5) = 7^32+1 = 1104427674243920646305299202 = 6*(8*50*2402*5764802*33232930569602)+2.

%t Table[7^2^n + 1, {n, 0, 6}] (* _Arkadiusz Wesolowski_, Nov 02 2012 *)

%o (MAGMA) [7^(2^n) + 1: n in [0..8]]; // _Vincenzo Librandi_, Jun 20 2011

%Y Cf. A000215 Fermat numbers: 2^(2^n)+1, n >= 0.

%Y Cf. A059919, A199591, A078303, A152581, A080176, A199592, A152585.

%K nonn,easy

%O 0,1

%A _Eric W. Weisstein_, Nov 21 2002

%E Edited by _Daniel Forgues_, Jun 19 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 17:01 EST 2016. Contains 278745 sequences.