login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078304 Generalized Fermat numbers: 7^(2^n)+1, n >= 0. 9

%I

%S 8,50,2402,5764802,33232930569602,1104427674243920646305299202,

%T 1219760487635835700138573862562971820755615294131238402

%N Generalized Fermat numbers: 7^(2^n)+1, n >= 0.

%C From _Daniel Forgues_, Jun 19 2011: (Start)

%C Generalized Fermat numbers F_n(a) := F_n(a,1) = a^(2^n)+1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for the current sequence) (Ribenboim (1996)).

%C All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994, 1998)). (This only expresses that the factors are odd, which means that it only applies to odd generalized Fermat numbers.) (End)

%H Vincenzo Librandi, <a href="/A078304/b078304.txt">Table of n, a(n) for n = 0..12</a>

%H Anders Björn and Hans Riesel, <a href="http://www.jstor.org/stable/2584996">Factors of Generalized Fermat Numbers</a>, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GeneralizedFermatNumber.html">Generalized Fermat Number</a>

%H OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>

%F a(0) = 8, a(n)=(a(n-1)-1)^2+1, n >= 1.

%F a(n) = 6*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 6*(empty product, i.e., 1)+ 2 = 8 = a(0). This means that the GCD of any pair of terms is 2. -_ Daniel Forgues_, Jun 20 2011

%e a(0) = 7^1+1 = 8 = 6*(1)+2 = 6*(empty product)+2.

%e a(1) = 7^2+1 = 50 = 6*(8)+2.

%e a(2) = 7^4+1 = 2402 = 6*(8*50)+2.

%e a(3) = 7^8+1 = 5764802 = 6*(8*50*2402)+2.

%e a(4) = 7^16+1 = 33232930569602 = 6*(8*50*2402*5764802)+2.

%e a(5) = 7^32+1 = 1104427674243920646305299202 = 6*(8*50*2402*5764802*33232930569602)+2.

%t Table[7^2^n + 1, {n, 0, 6}] (* _Arkadiusz Wesolowski_, Nov 02 2012 *)

%o (MAGMA) [7^(2^n) + 1: n in [0..8]]; // _Vincenzo Librandi_, Jun 20 2011

%Y Cf. A000215 Fermat numbers: 2^(2^n)+1, n >= 0.

%Y Cf. A059919, A199591, A078303, A152581, A080176, A199592, A152585.

%K nonn,easy

%O 0,1

%A _Eric W. Weisstein_, Nov 21 2002

%E Edited by _Daniel Forgues_, Jun 19 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 07:22 EST 2014. Contains 249839 sequences.