This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078303 Generalized Fermat numbers: 6^(2^n) + 1, n >= 0. 13
 7, 37, 1297, 1679617, 2821109907457, 7958661109946400884391937, 63340286662973277706162286946811886609896461828097 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The next term is too large to include. As for standard Fermat numbers 2^(2^n) + 1, a number (2b)^m + 1 (with b > 1) can only be prime if m is a power of 2. On the other hand, out of the first 13 base-6 Fermat numbers, only the first three are primes. There are only 5 known Fermat primes of the form 2^(2^n) + 1: {3, 5, 17, 257, 65537}. There are only 2 known base-10 generalized Fermat primes of the form 10^(2^n) + 1: {11, 101}. - Alexander Adamchuk, Mar 17 2007 Since all powers of 6 are congruent to 6 (mod 10), all terms of this sequence are congruent to 7 (mod 10). - Daniel Forgues, Jun 22 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..12 Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446. C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=6) Wilfrid Keller, GFN06 factoring status Eric Weisstein's World of Mathematics, Generalized Fermat Number OEIS Wiki, Generalized Fermat numbers FORMULA a(0) = 7, a(n) = (a(n-1)-1)^2 + 1, n >= 1. a(n) = 5*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 5*(empty product, i.e., 1)+ 2 = 7 = a(0). This implies that the terms are pairwise coprime. - Daniel Forgues, Jun 20 2011 EXAMPLE a(0) = 6^1+1 = 7 = 5*(1)+2 = 5*(empty product)+2; a(1) = 6^2+1 = 37 = 5*(7)+2; a(2) = 6^4+1 = 1297 = 5*(7*37)+2; a(3) = 6^8+1 = 1679617 = 5*(7*37*1297)+2; a(4) = 6^16+1 = 2821109907457 = 5*(7*37*1297*1679617)+2; a(5) = 6^32+1 = 7958661109946400884391937 = 5*(7*37*1297*1679617*2821109907457)+2; MATHEMATICA Table[6^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *) PROG (MAGMA) [6^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011 (PARI) a(n)=6^(2^n)+1 \\ Charles R Greathouse IV, Jun 21 2011 CROSSREFS Cf. A000215 Fermat numbers: 2^(2^n) + 1, n >= 0. Cf. A019434 Fermat primes of the form 2^(2^n) + 1. Cf. A123669, A123599, A056993, A126032, A178428, A059919, A199591, A078304, A152581, A080176, A199592, A152585. Sequence in context: A292807 A210620 A250843 * A127729 A129736 A220852 Adjacent sequences:  A078300 A078301 A078302 * A078304 A078305 A078306 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Nov 21 2002 EXTENSIONS Edited by Daniel Forgues, Jun 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 03:10 EDT 2019. Contains 326318 sequences. (Running on oeis4.)