login
A078221
a(1) = 1, a(n+1) > a(n) is the smallest multiple of a(n) using only odd digits.
14
1, 3, 9, 99, 9999, 99999999, 9999999999999999, 99999999999999999999999999999999, 9999999999999999999999999999999999999999999999999999999999999999
OFFSET
1,2
FORMULA
a(n) = 10^(2^(n-3)) - 1 for n >= 3. (Proof by induction. Consider a(n)*f, L = ceiling(log(f)/log(10)), g1 = number formed by the first L digits of a(n)*f, g2 = number formed by the last L digits of a(n)*f => g1 + g2 = number formed by L 9's, if L <= 10^(2^(n-2)) + 1). - Sascha Kurz, Jan 04 2003
MAPLE
1, 3, seq(10^(2^(n-3))-1, n=3..11);
PROG
(Python)
def A078221(n): return 2*n-1 if n < 3 else 10**(2**(n-3)) - 1 # Chai Wah Wu, Jan 12 2022
CROSSREFS
Cf. A078222.
Sequence in context: A018695 A250302 A156336 * A376409 A245646 A018716
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Nov 22 2002
EXTENSIONS
More terms from Sascha Kurz, Jan 04 2003
STATUS
approved