login
A078109
Let u(1)=u(2)=1, u(3)=2n, u(k) = abs(u(k-1)-u(k-2)-u(k-3)) and M(k)= Max( u(i) : 1<=i<=k), then for any k>=a(n), M(k)=sqrtint(k + A078108(n)) where sqrtint(x) denotes floor(sqrt(x)).
1
3, 10, 38, 10, 35, 66, 19, 150, 90, 30, 243, 159, 138, 270, 19, 186, 35, 178, 358, 127, 46, 334, 1, 23, 370, 438, 343, 182, 430, 46, 454, 470, 534, 30, 618, 734, 903, 570, 302, 571, 638, 30, 166, 822
OFFSET
1,1
COMMENTS
Conjecture : a(n) always exists, a(n)/n^2 is bounded. If initial conditions are u(1)=u(2)=1, u(3)=2n+1, then u(k) reaches a 2-cycle for any k>m large enough (cf. A078098)
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Dec 05 2002
STATUS
approved