login
A078108
Let u(1)=u(2)=1, u(3)=2n, u(k) = abs(u(k-1)-u(k-2)-u(k-3)) and M(k)= Max( u(i) : 1<=i<=k), then for any k>=A078109(n), M(k)=sqrtint(k + a(n)) where sqrtint(x) denotes floor(sqrt(x)).
3
4, 24, 156, 184, 324, 608, 940, 1784, 1844, 3104, 5996, 4600, 4484, 6128, 6220, 7208, 8244, 9, 424, 11740, 13560, 14836, 19264, 19756, 23344, 24524, 26224, 32940, 34912, 34548, 42808, 52428, 46120, 47492, 52280, 67908, 86120, 8008, 4, 147152
OFFSET
1,1
COMMENTS
It appears that (1) a(n) always exists, (2) a(n) is even, (3) a(n)/n^(5/2) -> infinity. If initial conditions are u(1)=u(2)=1, u(3)=2n+1, then u(k) reaches a 2-cycle for any k>m large enough (cf. A078098) - Benoit Cloitre, Jan 29 2006
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Dec 05 2002
STATUS
approved